Mark completed realism items in TODO

This commit is contained in:
Codex Agent
2025-11-26 22:52:57 +01:00
parent b2427fc797
commit 311263b86f

View File

@@ -9,10 +9,10 @@
- [ ] Dashboard polish: compact turbine/generator rows, color critical warnings (SCRAM/heat-sink), and reduce repeated log noise.
- [ ] Dashboard multi-page view (F1/F2): retain numeric view on F1; future F2 schematic should mirror real PWR layout with ASCII art, flow/relief status, and minimal animations; add help/status hints and size checks; keep perf sane.
- [ ] Incremental realism plan:
- Add stored enthalpy for primary/secondary loops and a steam-drum mass/energy balance (sensible + latent) while keeping existing pump logic and tests passing. Target representative PWR conditions: primary 1516 MPa, 290320 °C inlet/320330 °C outlet, secondary saturation ~67 MPa with boil at ~490510 K.
- Adjust HX/pressure handling to use stored energy (saturation clamp and pressure rise) and validate steam formation with both pumps at ~3 GW. Use realistic tube-side material assumptions (Inconel 690/SS cladding) and clamp steam quality to phase-equilibrium enthalpy.
- Update turbine power mapping to consume steam enthalpy/quality and align protection trips with real steam presence; drive inlet steam around 67 MPa, quality/enthalpy-based flow to ~550600 MW(e) per machine class if steam is available.
- Add integration test: cold start → gens/pumps 2/2 → ramp to ~3 GW → confirm steam quality threshold at the secondary drum → enable all turbines and require electrical output. Include a step that tolerates one secondary pump off for a period to prove redundancy still yields steam.
- [x] Add stored enthalpy for primary/secondary loops and a steam-drum mass/energy balance (sensible + latent) while keeping existing pump logic and tests passing. Target representative PWR conditions: primary 1516 MPa, 290320 °C inlet/320330 °C outlet, secondary saturation ~67 MPa with boil at ~490510 K.
- [x] Adjust HX/pressure handling to use stored energy (saturation clamp and pressure rise) and validate steam formation with both pumps at ~3 GW. Use realistic tube-side material assumptions (Inconel 690/SS cladding) and clamp steam quality to phase-equilibrium enthalpy.
- [x] Update turbine power mapping to consume steam enthalpy/quality and align protection trips with real steam presence; drive inlet steam around 67 MPa, quality/enthalpy-based flow to ~550600 MW(e) per machine class if steam is available.
- [x] Add integration test: cold start → gens/pumps 2/2 → ramp to ~3 GW → confirm steam quality threshold at the secondary drum → enable all turbines and require electrical output. Include a step that tolerates one secondary pump off for a period to prove redundancy still yields steam.
- [x] Dashboard follow-ups: replace turbine “Steam P” with a more useful steam availability signal (enthalpy × steam flow).
- [x] Relief modeling: vent both loops gradually to ~1 MPa when reliefs are open, removing steam enthalpy/mass and capping pump targets to prevent instant repressurization.
- [x] Dashboard follow-ups: replace turbine “Steam P” with a more useful steam availability signal (enthalpy × steam flow).