diff --git a/TODO.md b/TODO.md index c59009c..23f5d02 100644 --- a/TODO.md +++ b/TODO.md @@ -9,10 +9,10 @@ - [ ] Dashboard polish: compact turbine/generator rows, color critical warnings (SCRAM/heat-sink), and reduce repeated log noise. - [ ] Dashboard multi-page view (F1/F2): retain numeric view on F1; future F2 schematic should mirror real PWR layout with ASCII art, flow/relief status, and minimal animations; add help/status hints and size checks; keep perf sane. - [ ] Incremental realism plan: - - Add stored enthalpy for primary/secondary loops and a steam-drum mass/energy balance (sensible + latent) while keeping existing pump logic and tests passing. Target representative PWR conditions: primary 15–16 MPa, 290–320 °C inlet/320–330 °C outlet, secondary saturation ~6–7 MPa with boil at ~490–510 K. - - Adjust HX/pressure handling to use stored energy (saturation clamp and pressure rise) and validate steam formation with both pumps at ~3 GW. Use realistic tube-side material assumptions (Inconel 690/SS cladding) and clamp steam quality to phase-equilibrium enthalpy. - - Update turbine power mapping to consume steam enthalpy/quality and align protection trips with real steam presence; drive inlet steam around 6–7 MPa, quality/enthalpy-based flow to ~550–600 MW(e) per machine class if steam is available. - - Add integration test: cold start → gens/pumps 2/2 → ramp to ~3 GW → confirm steam quality threshold at the secondary drum → enable all turbines and require electrical output. Include a step that tolerates one secondary pump off for a period to prove redundancy still yields steam. + - [x] Add stored enthalpy for primary/secondary loops and a steam-drum mass/energy balance (sensible + latent) while keeping existing pump logic and tests passing. Target representative PWR conditions: primary 15–16 MPa, 290–320 °C inlet/320–330 °C outlet, secondary saturation ~6–7 MPa with boil at ~490–510 K. + - [x] Adjust HX/pressure handling to use stored energy (saturation clamp and pressure rise) and validate steam formation with both pumps at ~3 GW. Use realistic tube-side material assumptions (Inconel 690/SS cladding) and clamp steam quality to phase-equilibrium enthalpy. + - [x] Update turbine power mapping to consume steam enthalpy/quality and align protection trips with real steam presence; drive inlet steam around 6–7 MPa, quality/enthalpy-based flow to ~550–600 MW(e) per machine class if steam is available. + - [x] Add integration test: cold start → gens/pumps 2/2 → ramp to ~3 GW → confirm steam quality threshold at the secondary drum → enable all turbines and require electrical output. Include a step that tolerates one secondary pump off for a period to prove redundancy still yields steam. - [x] Dashboard follow-ups: replace turbine “Steam P” with a more useful steam availability signal (enthalpy × steam flow). - [x] Relief modeling: vent both loops gradually to ~1 MPa when reliefs are open, removing steam enthalpy/mass and capping pump targets to prevent instant repressurization. - [x] Dashboard follow-ups: replace turbine “Steam P” with a more useful steam availability signal (enthalpy × steam flow).