"""Steam generator and turbine performance models.""" from __future__ import annotations from dataclasses import dataclass import logging from . import constants from .state import CoolantLoopState, TurbineState LOGGER = logging.getLogger(__name__) @dataclass class SteamGenerator: drum_volume_m3: float = 200.0 def steam_enthalpy(self, loop: CoolantLoopState) -> float: base = 2_700.0 # kJ/kg saturated steam quality_adjustment = 500.0 * loop.steam_quality return base + quality_adjustment @dataclass class Turbine: generator_efficiency: float = constants.GENERATOR_EFFICIENCY mechanical_efficiency: float = constants.STEAM_TURBINE_EFFICIENCY rated_output_mw: float = 400.0 # cap per unit electrical output spool_time: float = constants.TURBINE_SPOOL_TIME throttle: float = 1.0 # 0-1 valve position def step( self, loop: CoolantLoopState, state: TurbineState, steam_power_mw: float = 0.0, dt: float = 1.0, ) -> None: effective_mass_flow = loop.mass_flow_rate * max(0.0, loop.steam_quality) if steam_power_mw <= 0.0 and (loop.steam_quality <= 0.01 or effective_mass_flow <= 10.0): # No steam available; turbine should idle. state.shaft_power_mw = 0.0 state.electrical_output_mw = 0.0 state.load_demand_mw = 0.0 state.load_supplied_mw = 0.0 state.steam_enthalpy = 0.0 state.condenser_temperature = max(305.0, loop.temperature_in - 20.0) return throttle = min(constants.TURBINE_THROTTLE_MAX, max(constants.TURBINE_THROTTLE_MIN, self.throttle)) throttle_eff = 1.0 - constants.TURBINE_THROTTLE_EFFICIENCY_DROP * (constants.TURBINE_THROTTLE_MAX - throttle) enthalpy = 2_700.0 + loop.steam_quality * 600.0 mass_flow = effective_mass_flow * 0.6 * throttle computed_power = (enthalpy * mass_flow / 1_000.0) / 1_000.0 available_power = steam_power_mw if steam_power_mw > 0 else computed_power backpressure_loss = 1.0 - _backpressure_penalty(loop) shaft_power_mw = available_power * self.mechanical_efficiency * throttle_eff * backpressure_loss electrical = shaft_power_mw * self.generator_efficiency if electrical > self.rated_output_mw: electrical = self.rated_output_mw shaft_power_mw = electrical / max(1e-6, self.generator_efficiency) condenser_temp = max(305.0, loop.temperature_in - 20.0) state.steam_enthalpy = enthalpy state.shaft_power_mw = _ramp(state.shaft_power_mw, shaft_power_mw, dt, self.spool_time) state.electrical_output_mw = _ramp(state.electrical_output_mw, electrical, dt, self.spool_time) state.condenser_temperature = condenser_temp LOGGER.debug( "Turbine output: shaft=%.1fMW electrical=%.1fMW condenser=%.1fK", shaft_power_mw, electrical, condenser_temp, ) def _ramp(current: float, target: float, dt: float, time_constant: float) -> float: if time_constant <= 0.0: return target alpha = min(1.0, max(0.0, dt / max(1e-6, time_constant))) return current + (target - current) * alpha def _backpressure_penalty(loop: CoolantLoopState) -> float: base = constants.CONDENSER_BASE_PRESSURE_MPA max_p = constants.CONDENSER_MAX_PRESSURE_MPA pressure = max(base, min(max_p, loop.pressure)) if pressure <= base: return 0.0 frac = (pressure - base) / max(1e-6, max_p - base) return min(constants.CONDENSER_BACKPRESSURE_PENALTY, frac * constants.CONDENSER_BACKPRESSURE_PENALTY)