"""Fuel behavior, burnup, and decay heat modeling.""" from __future__ import annotations from dataclasses import dataclass, field import logging from . import constants from .atomic import Atom, AtomicPhysics, FissionEvent, make_atom from .state import CoreState LOGGER = logging.getLogger(__name__) def fuel_reactivity_penalty(burnup: float) -> float: """Simplistic model that penalizes reactivity as burnup increases.""" # Burnup is 0-1, penalty grows quadratically to mimic depletion. return 0.4 * burnup**2 def decay_heat_fraction(burnup: float) -> float: """Return remaining decay heat fraction relative to nominal power.""" return min(0.07 + 0.2 * burnup, 0.15) @dataclass class FuelAssembly: enrichment: float # fraction U-235 mass_kg: float fissile_atom: Atom = field(default_factory=lambda: make_atom(92, 143)) atomic_physics: AtomicPhysics = field(default_factory=AtomicPhysics) decay_activity_base: float = 1e16 # nominal decay events per second at burnup 0 def available_energy_j(self, state: CoreState) -> float: fraction_remaining = max(0.0, 1.0 - state.burnup) return self.mass_kg * constants.FUEL_ENERGY_DENSITY * fraction_remaining def simulate_electron_hit(self) -> FissionEvent: return self.atomic_physics.electron_induced_fission(self.fissile_atom) def prompt_energy_rate(self, flux: float, control_fraction: float) -> tuple[float, FissionEvent]: """Compute MW thermal from prompt fission by sampling atomic physics.""" event = self.simulate_electron_hit() effective_flux = max(0.0, flux * max(0.0, 1.0 - control_fraction)) atoms = self.mass_kg / self.fissile_atom.atomic_mass_kg event_rate = max( 0.0, effective_flux * constants.ELECTRON_FISSION_CROSS_SECTION * atoms * self.enrichment, ) power_watts = event_rate * event.energy_mev * constants.MEV_TO_J power_mw = power_watts / constants.MEGAWATT LOGGER.debug( "Prompt fission products %s-%d + %s-%d yielding %.2f MW", event.products[0].symbol, event.products[0].mass_number, event.products[1].symbol, event.products[1].mass_number, power_mw, ) return max(0.0, power_mw), event_rate, event def decay_reaction_effects( self, state: CoreState ) -> tuple[float, float, dict[str, float], dict[str, float]]: """Return (power MW, neutron source rate, product rates, particle rates).""" # Scale activity with burnup (fission products) and a small flux contribution. activity = self.decay_activity_base * (0.05 + state.burnup) * (1.0 + 0.00001 * state.neutron_flux) activity = max(0.0, min(activity, 1e20)) reactions = [ self.atomic_physics.alpha_decay(self.fissile_atom), self.atomic_physics.beta_minus_decay(self.fissile_atom), self.atomic_physics.beta_plus_decay(self.fissile_atom), self.atomic_physics.electron_capture(self.fissile_atom), self.atomic_physics.gamma_emission(self.fissile_atom), self.atomic_physics.spontaneous_fission(self.fissile_atom), ] weights = [1.0, 1.2, 0.5, 0.4, 1.6, 0.05] total_weight = sum(weights) power_watts = 0.0 neutron_source = 0.0 product_rates: dict[str, float] = {} particle_rates: dict[str, float] = {} for event, weight in zip(reactions, weights): rate = activity * (weight / total_weight) power_watts += rate * event.energy_mev * constants.MEV_TO_J for atom in event.products: product_rates[atom.symbol] = product_rates.get(atom.symbol, 0.0) + rate for particle in event.emitted_particles: particle_rates[particle] = particle_rates.get(particle, 0.0) + rate if particle == "n": neutron_source += rate power_mw = power_watts / constants.MEGAWATT capped_power = min(power_mw, 0.1 * max(state.power_output_mw, 1.0)) LOGGER.debug( "Decay reactions contribute %.2f MW (raw %.2f MW) with neutron source %.2e 1/s", capped_power, power_mw, neutron_source, ) return max(0.0, capped_power), neutron_source, product_rates, particle_rates def decay_reaction_power(self, state: CoreState) -> float: """Compatibility shim: return only power contribution.""" power_mw, _, _, _ = self.decay_reaction_effects(state) return power_mw