Compare commits
135 Commits
863060ee78
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e2fad87bfc | ||
|
|
12696b107f | ||
|
|
a600b59809 | ||
|
|
c0b97cbe6b | ||
|
|
5469f142a7 | ||
|
|
41b2206a0f | ||
|
|
d4ed590b0d | ||
|
|
a2afbabe49 | ||
|
|
990e53d421 | ||
|
|
44a51a85a8 | ||
|
|
f67e05bee2 | ||
|
|
7d4d2f1d4f | ||
|
|
f55fece5d5 | ||
|
|
59132a8bc1 | ||
|
|
c34f49319f | ||
|
|
d6c27a6373 | ||
|
|
def8ded816 | ||
|
|
7ffb2a8ce0 | ||
|
|
d626007fae | ||
|
|
00434e3a88 | ||
|
|
5a22f7471f | ||
|
|
b9274ebecd | ||
|
|
4a872a9c1c | ||
|
|
23d60f3f21 | ||
|
|
5ec2f123c3 | ||
|
|
6e55306901 | ||
|
|
845de2c429 | ||
|
|
416e2cf98a | ||
|
|
79f83c56d2 | ||
|
|
311263b86f | ||
|
|
b2427fc797 | ||
|
|
abc1cb79e1 | ||
|
|
fae85404a7 | ||
|
|
911369f079 | ||
|
|
b9809eb73d | ||
|
|
6bd0f18df4 | ||
|
|
b06246b1ff | ||
|
|
327fca7096 | ||
|
|
3cb72f7ff0 | ||
|
|
cfe2545b32 | ||
|
|
bb2f03d8b2 | ||
|
|
c2bbadcaf4 | ||
|
|
0e2ff1a324 | ||
|
|
28af1ec365 | ||
|
|
52eeee3a0d | ||
|
|
157212a00d | ||
|
|
cde6731119 | ||
|
|
27b34d1c71 | ||
|
|
0ded2370c9 | ||
|
|
0f54540526 | ||
|
|
4162ecf712 | ||
|
|
bf744a07a5 | ||
|
|
afa8997614 | ||
|
|
03595b0d12 | ||
|
|
8ece3efb04 | ||
|
|
f6ff6fc618 | ||
|
|
9dc4ca7733 | ||
|
|
7f2b193dca | ||
|
|
2c3f9e3b45 | ||
|
|
d6bb0543b6 | ||
|
|
9d4bc17971 | ||
|
|
0886c9d26e | ||
|
|
3a030031fa | ||
|
|
70608efdc8 | ||
|
|
ba4505701a | ||
|
|
86baa43865 | ||
|
|
b943540e52 | ||
|
|
cb208241b8 | ||
|
|
3d1fbb20c4 | ||
|
|
5f53340f17 | ||
|
|
9807806663 | ||
|
|
01fec1df42 | ||
|
|
4861fa4320 | ||
|
|
f664ab8038 | ||
|
|
7be8e27a5d | ||
|
|
710459b521 | ||
|
|
4f4e966d1d | ||
|
|
35efbd79a2 | ||
|
|
b945de6612 | ||
|
|
515ede6567 | ||
|
|
5099a4252d | ||
|
|
57c686736a | ||
|
|
a5c52b7652 | ||
|
|
1a8b91a37d | ||
|
|
001d8b7171 | ||
|
|
2d0a554797 | ||
|
|
bc3b6b19b1 | ||
|
|
f02523331f | ||
|
|
c67322a1d2 | ||
|
|
521f5c9186 | ||
|
|
aaff08745d | ||
|
|
733ddf7692 | ||
|
|
98ff4227a1 | ||
|
|
faf603d2c5 | ||
|
|
64eed8a539 | ||
|
|
627e93a381 | ||
|
|
1d3de607b5 | ||
|
|
cc4dd794d0 | ||
|
|
14adf86e7f | ||
|
|
92857a27a0 | ||
|
|
5d62ea29b6 | ||
|
|
60c5e68ac4 | ||
|
|
d6655a7984 | ||
|
|
67436d795d | ||
|
|
14182e9db6 | ||
|
|
fb1276f39f | ||
|
|
c30c838fcc | ||
|
|
faac1dc7b0 | ||
|
|
bcd1eec84f | ||
|
|
79f98faeeb | ||
|
|
5d8b617c9e | ||
|
|
2856d83600 | ||
|
|
f0f2128ae6 | ||
|
|
b03e80da9f | ||
|
|
e7d8a34818 | ||
|
|
287a8e186a | ||
|
|
a8da5371db | ||
|
|
e81a9fdbe3 | ||
|
|
e18f100e15 | ||
|
|
c2d44bbdd3 | ||
|
|
7ef61c537f | ||
|
|
e664af63ef | ||
|
|
d1751647cd | ||
|
|
038d3d0fea | ||
|
|
511544c2eb | ||
|
|
f626c99f44 | ||
|
|
5bd9992ed0 | ||
|
|
290b7a8565 | ||
|
|
ecc193f61b | ||
|
|
c9cd669ca4 | ||
|
|
7a0b5c4b96 | ||
|
|
fef1d32fbe | ||
|
|
2434034505 | ||
|
|
8d9b57f86d | ||
|
|
ba65f84cd4 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -1,3 +1,4 @@
|
||||
.venv/
|
||||
**/__pycache__/
|
||||
*.egg-info/
|
||||
artifacts/
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
## Project Structure & Module Organization
|
||||
All source code lives under `src/reactor_sim`. Submodules map to plant systems: `fuel.py` and `neutronics.py` govern fission power, `thermal.py` and `coolant.py` cover heat transfer and pumps, `turbine.py` drives the steam cycle, and `consumer.py` represents external electrical loads. High-level coordination happens in `reactor.py` and `simulation.py`. The convenience runner `run_simulation.py` executes the default scenario; add notebooks or scenario scripts under `experiments/` (create as needed). Keep assets such as plots or exported telemetry inside `artifacts/`.
|
||||
Feature catalog lives in `FEATURES.md`; update it whenever behavior is added or changed. Long-term realism tasks are tracked in `TODO.md`; keep it in sync as work progresses.
|
||||
|
||||
## Build, Test, and Development Commands
|
||||
- `.venv/bin/python -m reactor_sim.simulation` — run the default 10-minute transient and print JSON snapshots using the checked-in virtualenv.
|
||||
@@ -12,7 +13,7 @@ All source code lives under `src/reactor_sim`. Submodules map to plant systems:
|
||||
- A git remote for `origin` is configured; push changes to `origin/main` once work is complete so dashboards stay in sync.
|
||||
|
||||
## Operations & Control Hooks
|
||||
Manual commands live in `reactor_sim.commands.ReactorCommand`. Pass a `command_provider` callable to `ReactorSimulation` to adjust rods, pumps, turbine, coolant demand, or the attached `ElectricalConsumer`. Use `ReactorCommand.scram_all()` for full shutdown, `ReactorCommand(consumer_online=True, consumer_demand=600)` to hook the grid, or toggle pumps (`primary_pump_on=False`) to simulate faults. Control helpers in `control.py` expose `set_rods`, `increment_rods`, and `scram`, and you can switch `set_manual_mode(True)` to pause the automatic rod controller. For hands-on runs, launch the curses dashboard (`FISSION_DASHBOARD=1 FISSION_REALTIME=1 python run_simulation.py`) and use the on-screen shortcuts (q quit/save, space SCRAM, p/o pumps, t turbine, 1/2/3 toggle individual turbines, r reset/clear saved state, +/- rods in 0.05 steps, [/ ] consumer demand, s/d setpoint, `a` toggles auto/manual rods). Recommended startup: enable manual rods (`a`), withdraw to ~0.3 before ramping the turbine/consumer, then re-enable auto control when you want closed-loop operation.
|
||||
Manual commands live in `reactor_sim.commands.ReactorCommand`. Pass a `command_provider` callable to `ReactorSimulation` to adjust rods, pumps, turbine, coolant demand, or the attached `ElectricalConsumer`. Use `ReactorCommand.scram_all()` for full shutdown, `ReactorCommand(consumer_online=True, consumer_demand=600)` to hook the grid, or toggle pumps (`primary_pump_on=False`) to simulate faults. Control helpers in `control.py` expose `set_rods`, `increment_rods`, and `scram`, and you can switch `set_manual_mode(True)` to pause the automatic rod controller. For hands-on runs, launch the curses dashboard (`FISSION_DASHBOARD=1 FISSION_REALTIME=1 python run_simulation.py`) and use the on-screen shortcuts (q quit/save, space SCRAM, p/o pumps, t turbine, 1/2/3 toggle individual turbines, y/u/i turbine maintenance, m/n pump maintenance, k core maintenance, c consumer, r reset/clear saved state, + insert rods / - withdraw rods in 0.05 steps, [/ ] consumer demand, s/d setpoint, `a` toggles auto/manual rods). Recommended startup: enable manual rods (`a`), withdraw to ~0.3 before ramping the turbine/consumer, then re-enable auto control when you want closed-loop operation.
|
||||
The plant now boots cold (ambient core temperature, idle pumps); scripts must sequence startup: enable pumps, gradually withdraw rods, connect the consumer after turbine spin-up, and use `ControlSystem.set_power_setpoint` to chase desired output. Set `FISSION_REALTIME=1` to run continuously with real-time pacing; optionally set `FISSION_SIM_DURATION=infinite` for indefinite runs and send SIGINT/Ctrl+C to stop. Use `FISSION_SIM_DURATION=600` (default) for bounded offline batches.
|
||||
|
||||
## Coding Style & Naming Conventions
|
||||
@@ -30,3 +31,6 @@ Sim parameters live in constructors; never hard-code environment-specific paths.
|
||||
|
||||
## Reliability & Persistence
|
||||
Component wear is tracked via `failures.py`; stress from overheating, pump starvation, or turbine imbalance will degrade integrity and eventually disable the affected subsystem with automatic SCRAM for core damage. Plant state now persists between runs to `artifacts/last_state.json` by default (override via `FISSION_STATE_PATH` or the explicit save/load env vars). In the dashboard, press `r` to clear the saved snapshot and reboot the reactor to a cold, green-field state whenever you need a clean slate.
|
||||
|
||||
## Session Context
|
||||
See `CONTEXT_NOTES.md` for the latest behavioral changes, controls, and assumptions carried over between sessions.
|
||||
|
||||
24
CONTEXT_NOTES.md
Normal file
24
CONTEXT_NOTES.md
Normal file
@@ -0,0 +1,24 @@
|
||||
# Session Context Notes
|
||||
|
||||
- Reactor model: two-loop but tuned to RBMK-like pressures (nominal ~7 MPa for both loops). Loop pressure clamps to saturation baseline when pumps are off; pumps ramp flow/pressure over spool time when stopping or starting.
|
||||
- Feedwater & level: secondary steam drum uses shrink/swell-aware level sensing to drive a feedwater valve; makeup flow scales with steam draw toward the target level instead of instant inventory clamps.
|
||||
- Chemistry/fouling: plant tracks dissolved O2/boron/sodium; impurities plus high temp/steam draw increase HX fouling (reduces UA) and add condenser fouling/back-pressure. Oxygen degasses with steam; impurity ingress accelerates when venting.
|
||||
- Reactivity bias: boron ppm now biases shutdown reactivity; a very slow trim nudges boron toward the power setpoint after ~300s of operation.
|
||||
- Turbines: produce zero output unless steam quality is present and effective steam flow is >10 kg/s. Turbine panel shows steam availability (enthalpy × quality × mass flow) and steam enthalpy instead of loop pressure; condenser pressure/temperature/fouling shown with nominal bounds.
|
||||
- Generators: two diesel units, rated 50 MW, spool time 10s. Auto mode default `False`; manual toggles b/v. Auto stops when no load. Relief valves toggles l (primary) / ; (secondary) and displayed per loop.
|
||||
- Pumps: per-unit controls g/h (primary), j/k (secondary). Flow/pressure ramp down over spool when pumps stop. Pump status thresholds use >0.1 kg/s to show STOPPING.
|
||||
- Maintenance hotkeys: p (core, requires shutdown), m/n (primary 1/2), ,/. (secondary 1/2), B/V (generator 1/2), y/u/i (turbine 1/2/3).
|
||||
- Dashboard: two-column layout, trends panel for fuel temp and core power (delta and rate). Power Stats show aux demand/supply, generator and turbine output. Turbine panel shows steam availability/enthalpy instead of loop pressure. Core/temp/power lines include nominal/max.
|
||||
- Thermal updates: primary/secondary inlet temps now back-computed; when secondary flow is near zero, loops cool toward ambient over time. Relief venting removes mass/enthalpy with a multi-second ramp toward ~1 MPa and quenches superheat toward target-pressure saturation. Pumps cap target pressure when reliefs are open. Condenser modeled with vacuum pump drawdown, cooling-sink temperature, and fouling-driven back-pressure penalty.
|
||||
- Meltdown threshold: 2873 K. Auto rod control clears shutdown when set to auto and adjusts rods. Control rod worth/tuning currently unchanged.
|
||||
- Tests: `pytest` passing after all changes. Key regression additions include generator manual mode, turbine no-steam output, auto rod control, and passive cool-down.
|
||||
- Coolant demand fixed: demand increases when primary outlet is above target (sign was flipped before), so hot loops ramp flow instead of backing off.
|
||||
- Pump spin-down: pressure/flow ramp down over pump spool time with STOPPING->OFF threshold at 0.1 kg/s; prevents instant drop when last pump stops.
|
||||
- Steam pressure display shows 0 unless steam quality ≥0.05 and flow ≥100 kg/s to avoid showing pump head as steam pressure.
|
||||
- Passive cool-down: when secondary flow ~0, loops cool toward ambient; primary inlet/outlet back-propagated from transferred heat and ambient.
|
||||
- Relief valves: l (primary) and ; (secondary) vent with mass/enthalpy loss, ramp pressure toward ~1 MPa over several seconds, cap pump targets while open; status displayed per loop.
|
||||
- Generator behavior: starting/running only produce power when load is present; auto off by default; manual toggles b/v; auto stops with no load; base aux drops to 0 when idle/cold.
|
||||
- Pressure tying: loop pressure floors to saturation(temp) when pumps off; pump targets aim for ~7 MPa nominal RBMK-like setpoints.
|
||||
- Turbines/governor: require meaningful steam flow/quality; otherwise zero output. Steam supply pressure in turbine panel reads 0 when no steam. Throttle now biases toward load demand with a governor term, and overspeed/overload >105% rated electrical trips a unit and spools it down.
|
||||
- Rod control now supports three banks with weighted worth; xenon/iodine tracked with decay and burn-out; new UA·ΔT_lm steam-generator model and pump head/flow curves.
|
||||
- Dashboard shows heat-exchanger ΔT/efficiency and protections; pumps and HX changes documented in FEATURES.md / TODO.md.
|
||||
10
FEATURES.md
Normal file
10
FEATURES.md
Normal file
@@ -0,0 +1,10 @@
|
||||
## C.O.R.E. feature set
|
||||
|
||||
- **Core physics**: point-kinetics with per-bank delayed neutron precursors, temperature feedback, fuel burnup penalty, xenon/iodine buildup with decay and burn-out, and rod-bank worth curves.
|
||||
- **Rod control**: three rod banks with weighted worth; auto controller chases 3 GW setpoint with safety backoff and filtered power feedback; manual mode with staged bank motion and SCRAM; state persists across runs. Soluble boron bias contributes slow negative reactivity and trims toward the setpoint.
|
||||
- **Coolant & hydraulics**: primary/secondary pumps with head/flow curves, power draw scaling, wear tracking; pressure floors tied to saturation; auxiliary power model with generator auto-start.
|
||||
- **Heat transfer**: steam-generator UA·ΔT_lm model with a pinch cap to keep the primary outlet hotter than the secondary, coolant heating uses total fission power with fuel heating decoupled from exchanger draw, and the secondary thermal solver includes passive cool-down plus steam-drum mass/energy balance with latent heat and a shrink/swell-aware feedwater valve controller; dissolved oxygen/sodium drive HX fouling that reduces effective UA.
|
||||
- **Pressurizer & inventory**: primary pressurizer trims toward 7 MPa with level tracking, loop inventories/levels steer flow availability, secondary steam boil-off draws down level with auto makeup, and pumps reduce flow/status to `CAV` when NPSH is insufficient.
|
||||
- **Steam cycle**: three turbines with spool dynamics, throttle mapping and a simple governor with overspeed/overload trip, condenser vacuum/back-pressure with fouling and cooling sink temperature, chemistry-driven fouling/back-pressure penalties, load dispatch to consumer, steam quality gating for output, generator states with batteries/spool, and steam enthalpy-driven availability readout on the dashboard.
|
||||
- **Protections & failures**: health monitor degrading components under stress, automatic SCRAM on core or heat-sink loss plus DNB/subcool and secondary level/pressure trips, relief valves per loop with venting/mass loss and pump pressure caps, maintenance actions to restore integrity.
|
||||
- **Persistence & ops**: snapshots auto-save/load to `artifacts/last_state.json`; dashboard with live metrics, protections/warnings, heat-exchanger telemetry, component health, and control shortcuts.
|
||||
24
TODO.md
Normal file
24
TODO.md
Normal file
@@ -0,0 +1,24 @@
|
||||
## Future realism upgrades
|
||||
|
||||
- [x] Steam generator UA·ΔT_lm heat exchange and pump head/flow curves; keep validating temps under nominal load.
|
||||
- [x] Rod banks with worth curves, xenon/samarium buildup, and delayed-group kinetics per bank.
|
||||
- [x] Pressurizer behavior, primary/secondary inventory and level effects, and pump NPSH/cavitation checks.
|
||||
- [x] Model feedwater/steam-drum mass-energy balance, turbine throttle/efficiency maps, and condenser back-pressure.
|
||||
- [x] Introduce CHF/DNB margin, clad/fuel split temps, and SCRAM matrix for subcooling loss or SG level/pressure trips.
|
||||
- [x] Flesh out condenser behavior: vacuum pump limits, cooling water temperature coupling, and dynamic back-pressure with fouling.
|
||||
- [x] Dashboard polish: compact turbine/generator rows, color critical warnings (SCRAM/heat-sink), and reduce repeated log noise.
|
||||
- [ ] Dashboard multi-page view (F1/F2): retain numeric view on F1; future F2 schematic should mirror real PWR layout with ASCII art, flow/relief status, and minimal animations; add help/status hints and size checks; keep perf sane.
|
||||
- [x] Core thermal realism: add a simple radial fuel model (pellet/rim/clad temps) with burnup-driven conductivity drop and gap conductance; upgrade CHF/DNB correlation (e.g., Groeneveld/Chen) parameterized by pressure, mass flux, and quality, then calibrate margins.
|
||||
- [ ] Transient protection ladder: add dP/dt and dT/dt trips for SG overfill/depressurization and rod-run-in alarms; implement graded warn/arm/trip stages surfaced on the dashboard.
|
||||
- [x] Chemistry & fouling: track dissolved oxygen/boron and corrosion/fouling that degrade HX efficiency and condenser vacuum; let feedwater temperature/chemistry affect steam purity/back-pressure.
|
||||
- [x] Balance-of-plant dynamics: steam-drum level controller with shrink/swell, feedwater valve model, turbine throttle governor/overspeed trip, and improved load-follow tied to grid demand ramps.
|
||||
- [ ] Neutronics/feedback smoothing: add detector/measurement lag, fuel→clad→coolant transport delays, shared boron trim for fine regulation, and retune rod gains/rate limits to reduce power hunting while keeping safety margins intact.
|
||||
- [ ] Component wear & maintenance: make wear depend on duty cycle and off-nominal conditions (cavitation, high ΔP, high temp); add preventive maintenance scheduling and show next-due in the dashboard.
|
||||
- [ ] Scenarios & tooling: presets for cold start, load-follow, and fault injection (pump fail, relief stuck) with seedable randomness; snapshot diff tooling to compare saved states.
|
||||
- [ ] Incremental realism plan:
|
||||
- [x] Add stored enthalpy for primary/secondary loops and a steam-drum mass/energy balance (sensible + latent) while keeping existing pump logic and tests passing. Target representative PWR conditions: primary 15–16 MPa, 290–320 °C inlet/320–330 °C outlet, secondary saturation ~6–7 MPa with boil at ~490–510 K.
|
||||
- [x] Adjust HX/pressure handling to use stored energy (saturation clamp and pressure rise) and validate steam formation with both pumps at ~3 GW. Use realistic tube-side material assumptions (Inconel 690/SS cladding) and clamp steam quality to phase-equilibrium enthalpy.
|
||||
- [x] Update turbine power mapping to consume steam enthalpy/quality and align protection trips with real steam presence; drive inlet steam around 6–7 MPa, quality/enthalpy-based flow to ~550–600 MW(e) per machine class if steam is available.
|
||||
- [x] Add integration test: cold start → gens/pumps 2/2 → ramp to ~3 GW → confirm steam quality threshold at the secondary drum → enable all turbines and require electrical output. Include a step that tolerates one secondary pump off for a period to prove redundancy still yields steam.
|
||||
- [x] Dashboard follow-ups: replace turbine “Steam P” with a more useful steam availability signal (enthalpy × steam flow).
|
||||
- [x] Relief modeling: vent both loops gradually to ~1 MPa when reliefs are open, removing steam enthalpy/mass and capping pump targets to prevent instant repressurization.
|
||||
@@ -1,104 +0,0 @@
|
||||
{
|
||||
"control": {
|
||||
"setpoint_mw": 3000.0,
|
||||
"rod_fraction": 0.3872181667930225
|
||||
},
|
||||
"plant": {
|
||||
"core": {
|
||||
"fuel_temperature": 633.2342060602825,
|
||||
"neutron_flux": 31335131.43776027,
|
||||
"reactivity_margin": 0.006241667151538859,
|
||||
"power_output_mw": 2976.900110634399,
|
||||
"burnup": 0.004945521266135161
|
||||
},
|
||||
"primary_loop": {
|
||||
"temperature_in": 295.0,
|
||||
"temperature_out": 338.7522062115579,
|
||||
"pressure": 14.0,
|
||||
"mass_flow_rate": 16200.0,
|
||||
"steam_quality": 0.0
|
||||
},
|
||||
"secondary_loop": {
|
||||
"temperature_in": 295.0,
|
||||
"temperature_out": 360.05377003828596,
|
||||
"pressure": 6.650537700382859,
|
||||
"mass_flow_rate": 10880.0,
|
||||
"steam_quality": 0.6505377003828593
|
||||
},
|
||||
"turbines": [
|
||||
{
|
||||
"steam_enthalpy": 3090.3226202297155,
|
||||
"shaft_power_mw": 336.9056685758782,
|
||||
"electrical_output_mw": 323.4294418328431,
|
||||
"condenser_temperature": 305.0,
|
||||
"load_demand_mw": 0.0,
|
||||
"load_supplied_mw": 0.0
|
||||
},
|
||||
{
|
||||
"steam_enthalpy": 3090.3226202297155,
|
||||
"shaft_power_mw": 336.9056685758782,
|
||||
"electrical_output_mw": 323.4294418328431,
|
||||
"condenser_temperature": 305.0,
|
||||
"load_demand_mw": 0.0,
|
||||
"load_supplied_mw": 0.0
|
||||
},
|
||||
{
|
||||
"steam_enthalpy": 3090.3226202297155,
|
||||
"shaft_power_mw": 336.9056685758782,
|
||||
"electrical_output_mw": 323.4294418328431,
|
||||
"condenser_temperature": 305.0,
|
||||
"load_demand_mw": 0.0,
|
||||
"load_supplied_mw": 0.0
|
||||
}
|
||||
],
|
||||
"time_elapsed": 600.0
|
||||
},
|
||||
"metadata": {
|
||||
"primary_pump_active": true,
|
||||
"secondary_pump_active": true,
|
||||
"turbine_active": true,
|
||||
"turbine_units": [
|
||||
true,
|
||||
true,
|
||||
true
|
||||
],
|
||||
"shutdown": false,
|
||||
"consumer": {
|
||||
"online": false,
|
||||
"demand_mw": 800.0,
|
||||
"name": "Grid"
|
||||
}
|
||||
},
|
||||
"health": {
|
||||
"core": {
|
||||
"name": "core",
|
||||
"integrity": 0.9400000000000066,
|
||||
"failed": false
|
||||
},
|
||||
"primary_pump": {
|
||||
"name": "primary_pump",
|
||||
"integrity": 0.5800000000000063,
|
||||
"failed": false
|
||||
},
|
||||
"secondary_pump": {
|
||||
"name": "secondary_pump",
|
||||
"integrity": 0.1120000000000021,
|
||||
"failed": false
|
||||
},
|
||||
"turbine_1": {
|
||||
"name": "turbine_1",
|
||||
"integrity": 0.610000000000003,
|
||||
"failed": false
|
||||
},
|
||||
"turbine_2": {
|
||||
"name": "turbine_2",
|
||||
"integrity": 0.610000000000003,
|
||||
"failed": false
|
||||
},
|
||||
"turbine_3": {
|
||||
"name": "turbine_3",
|
||||
"integrity": 0.610000000000003,
|
||||
"failed": false
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -10,6 +10,10 @@ dependencies = []
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = ["pytest>=7.0"]
|
||||
dashboard = [
|
||||
"rich>=13.7.0",
|
||||
"textual>=0.50.0",
|
||||
]
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=61"]
|
||||
|
||||
@@ -21,6 +21,12 @@ class ReactorCommand:
|
||||
consumer_demand: float | None = None
|
||||
rod_manual: bool | None = None
|
||||
turbine_units: dict[int, bool] | None = None
|
||||
primary_pumps: dict[int, bool] | None = None
|
||||
secondary_pumps: dict[int, bool] | None = None
|
||||
generator_units: dict[int, bool] | None = None
|
||||
generator_auto: bool | None = None
|
||||
primary_relief: bool | None = None
|
||||
secondary_relief: bool | None = None
|
||||
maintenance_components: tuple[str, ...] = tuple()
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -7,16 +7,88 @@ MEGAWATT = 1_000_000.0
|
||||
NEUTRON_LIFETIME = 0.1 # seconds, prompt neutron lifetime surrogate
|
||||
FUEL_ENERGY_DENSITY = 200.0 * MEGAWATT # J/kg released as heat
|
||||
COOLANT_HEAT_CAPACITY = 4_200.0 # J/(kg*K) for water/steam
|
||||
COOLANT_DENSITY = 700.0 # kg/m^3 averaged between phases
|
||||
MAX_CORE_TEMPERATURE = 1_800.0 # K
|
||||
MAX_PRESSURE = 15.0 # MPa typical PWR primary loop limit
|
||||
COOLANT_DENSITY = 720.0 # kg/m^3 averaged between phases
|
||||
STEAM_LATENT_HEAT = 2_200_000.0 # J/kg approximate latent heat of vaporization
|
||||
CORE_MELTDOWN_TEMPERATURE = 2_873.0 # K (approx 2600C) threshold for irreversible meltdown
|
||||
MAX_CORE_TEMPERATURE = CORE_MELTDOWN_TEMPERATURE # Allow simulation to approach meltdown temperature
|
||||
MAX_PRESSURE = 16.0 # MPa PWR primary loop limit
|
||||
CLAD_MAX_TEMPERATURE = 1_200.0 # K clad softening / DNB concern
|
||||
CHF_MASS_FLUX_REF = 1_500.0 # kg/m2-s reference mass flux surrogate
|
||||
CHF_PRESSURE_REF_MPA = 7.0 # MPa reference pressure for CHF surrogate
|
||||
CONTROL_ROD_SPEED = 0.03 # fraction insertion per second
|
||||
CONTROL_ROD_WORTH = 0.042 # delta rho contribution when fully withdrawn
|
||||
CONTROL_ROD_BANK_WEIGHTS = (0.4, 0.35, 0.25)
|
||||
ROD_MANUAL_STEP = 0.025
|
||||
STEAM_TURBINE_EFFICIENCY = 0.34
|
||||
GENERATOR_EFFICIENCY = 0.96
|
||||
ENVIRONMENT_TEMPERATURE = 295.0 # K
|
||||
AMU_TO_KG = 1.660_539_066_60e-27
|
||||
MEV_TO_J = 1.602_176_634e-13
|
||||
ELECTRON_FISSION_CROSS_SECTION = 5e-16 # cm^2, tuned for simulation scale
|
||||
PUMP_SPOOL_TIME = 5.0 # seconds to reach commanded flow
|
||||
PRIMARY_PUMP_SHUTOFF_HEAD_MPA = 17.0 # approximate shutoff head for primary pumps
|
||||
SECONDARY_PUMP_SHUTOFF_HEAD_MPA = 8.0
|
||||
TURBINE_SPOOL_TIME = 12.0 # seconds to reach steady output
|
||||
|
||||
# Turbine/condenser parameters
|
||||
TURBINE_THROTTLE_MIN = 0.1
|
||||
TURBINE_THROTTLE_MAX = 1.0
|
||||
TURBINE_THROTTLE_EFFICIENCY_DROP = 0.15 # efficiency loss when at minimum throttle
|
||||
CONDENSER_BASE_PRESSURE_MPA = 0.01
|
||||
CONDENSER_MAX_PRESSURE_MPA = 0.3
|
||||
CONDENSER_BACKPRESSURE_PENALTY = 0.35 # fractional power loss at max back-pressure
|
||||
CONDENSER_VACUUM_PUMP_RATE = 0.05 # MPa per second drawdown toward base when below max load
|
||||
CONDENSER_COOLING_WATER_TEMP_K = 295.0 # cooling sink temperature
|
||||
CONDENSER_FOULING_RATE = 0.00002 # incremental penalty per second of hot operation
|
||||
CONDENSER_FOULING_MAX_PENALTY = 0.2 # max additional backpressure penalty from fouling
|
||||
CONDENSER_CHEM_FOULING_RATE = 0.0005 # per-second fouling increment scaled by impurity ppm
|
||||
CONDENSER_CHEM_BACKPRESSURE_FACTOR = 0.0002 # MPa increase per ppm impurities toward condenser pressure
|
||||
GENERATOR_SPOOL_TIME = 10.0 # seconds to reach full output
|
||||
# Auxiliary power assumptions
|
||||
PUMP_POWER_MW = 12.0 # MW draw per pump unit
|
||||
BASE_AUX_LOAD_MW = 5.0 # control, instrumentation, misc.
|
||||
NORMAL_CORE_POWER_MW = 3_000.0
|
||||
TEST_MAX_POWER_MW = 4_000.0
|
||||
PRIMARY_OUTLET_TARGET_K = 580.0
|
||||
SECONDARY_OUTLET_TARGET_K = 520.0
|
||||
PRIMARY_NOMINAL_PRESSURE = 15.5 # MPa PWR primary pressure
|
||||
SECONDARY_NOMINAL_PRESSURE = 6.5 # MPa steam drum/steam line pressure surrogate
|
||||
STEAM_GENERATOR_UA_MW_PER_K = 150.0 # overall UA for steam generator (MW/K)
|
||||
# Loop volume / inventory assumptions
|
||||
PRIMARY_LOOP_VOLUME_M3 = 350.0
|
||||
SECONDARY_LOOP_VOLUME_M3 = 320.0
|
||||
PRIMARY_PRESSURIZER_SETPOINT_MPA = 15.5
|
||||
PRIMARY_PRESSURIZER_DEADBAND_MPA = 0.2
|
||||
PRIMARY_PRESSURIZER_HEAT_RATE_MPA_PER_S = 0.08
|
||||
PRIMARY_PRESSURIZER_SPRAY_RATE_MPA_PER_S = 0.12
|
||||
PRIMARY_PRESSURIZER_LEVEL_DRAW_PER_S = 0.002
|
||||
PRIMARY_PRESSURIZER_LEVEL_FILL_PER_S = 0.001
|
||||
LOOP_INVENTORY_CORRECTION_RATE = 0.08 # fraction of nominal mass restored per second toward target
|
||||
PRIMARY_INVENTORY_TARGET = 0.95
|
||||
SECONDARY_INVENTORY_TARGET = 0.9
|
||||
SECONDARY_STEAM_LOSS_FRACTION = 0.02 # fraction of steam mass that leaves the loop each second
|
||||
NPSH_REQUIRED_MPA = 0.25
|
||||
LOW_LEVEL_FLOW_FLOOR = 0.05
|
||||
# Chemistry & fouling
|
||||
CHEM_MAX_PPM = 5_000.0
|
||||
CHEM_OXYGEN_DEFAULT_PPM = 50.0 # deoxygenated feedwater target (ppb -> ppm surrogate)
|
||||
CHEM_BORON_DEFAULT_PPM = 500.0
|
||||
CHEM_SODIUM_DEFAULT_PPM = 5.0
|
||||
HX_FOULING_RATE = 1e-5 # fouling increment per second scaled by impurities/temp
|
||||
HX_FOULING_HEAL_RATE = 5e-6 # cleaning/settling when cool/low steam
|
||||
HX_FOULING_MAX_PENALTY = 0.25 # fractional UA loss cap
|
||||
BORON_WORTH_PER_PPM = 8e-6 # delta rho per ppm relative to baseline boron
|
||||
BORON_TRIM_RATE_PPM_PER_S = 0.04 # slow boron trim toward setpoint when near target
|
||||
# Mild thermal/measurement lags
|
||||
FUEL_TO_CLAD_TIME_CONSTANT = 0.3 # seconds (mild lag)
|
||||
CLAD_TO_COOLANT_TIME_CONSTANT = 0.2 # seconds (mild lag)
|
||||
POWER_MEASUREMENT_TIME_CONSTANT = 10.0 # seconds
|
||||
# Passive cooldown
|
||||
PASSIVE_COOL_RATE_PRIMARY = 0.05 # K/s toward ambient when low/no transfer
|
||||
PASSIVE_COOL_RATE_SECONDARY = 0.08 # K/s toward ambient when no steam/heat sink
|
||||
RHR_ACTIVE = True
|
||||
RHR_CUTOFF_POWER_MW = 5.0
|
||||
RHR_COOL_RATE = 0.2 # K/s forced cooldown when power is near zero
|
||||
# Threshold inventories (event counts) for flagging common poisons in diagnostics.
|
||||
KEY_POISON_THRESHOLDS = {
|
||||
"Xe": 1e20, # xenon
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
import json
|
||||
import logging
|
||||
from pathlib import Path
|
||||
@@ -22,30 +22,103 @@ class ControlSystem:
|
||||
setpoint_mw: float = 3_000.0
|
||||
rod_fraction: float = 0.5
|
||||
manual_control: bool = False
|
||||
rod_banks: list[float] = field(default_factory=lambda: [0.5, 0.5, 0.5])
|
||||
rod_target: float = 0.5
|
||||
_filtered_power_mw: float = 0.0
|
||||
_integral_error: float = 0.0
|
||||
_ramp_start_mw: float = 0.0
|
||||
_ramp_progress_mw: float = 0.0
|
||||
_last_manual: bool = False
|
||||
|
||||
def update_rods(self, state: CoreState, dt: float) -> float:
|
||||
if not self.rod_banks or len(self.rod_banks) != len(constants.CONTROL_ROD_BANK_WEIGHTS):
|
||||
self.rod_banks = [self.rod_fraction] * len(constants.CONTROL_ROD_BANK_WEIGHTS)
|
||||
# Keep manual tweaks in sync with the target.
|
||||
self.rod_target = clamp(self.rod_target, 0.0, 0.95)
|
||||
if self.manual_control:
|
||||
if abs(self.rod_fraction - self.effective_insertion()) > 1e-6:
|
||||
self.rod_target = clamp(self.rod_fraction, 0.0, 0.95)
|
||||
self._advance_banks(self.rod_target, dt)
|
||||
self._last_manual = True
|
||||
return self.rod_fraction
|
||||
error = (state.power_output_mw - self.setpoint_mw) / self.setpoint_mw
|
||||
# When power is low (negative error) withdraw rods; when high, insert them.
|
||||
adjustment = error * 0.2
|
||||
adjustment = clamp(adjustment, -constants.CONTROL_ROD_SPEED * dt, constants.CONTROL_ROD_SPEED * dt)
|
||||
previous = self.rod_fraction
|
||||
self.rod_fraction = clamp(self.rod_fraction + adjustment, 0.0, 0.95)
|
||||
LOGGER.debug("Control rods %.3f -> %.3f (error=%.3f)", previous, self.rod_fraction, error)
|
||||
|
||||
# On transition from manual -> auto, start a gentle setpoint ramp from current power.
|
||||
if self._last_manual:
|
||||
self._ramp_start_mw = max(0.0, state.power_output_mw)
|
||||
self._ramp_progress_mw = 0.0
|
||||
self._last_manual = False
|
||||
|
||||
# Setpoint ramp: close the gap at a limited MW/s.
|
||||
ramp_rate = 5.0 # MW per second toward setpoint
|
||||
effective_setpoint = self.setpoint_mw
|
||||
if self._ramp_start_mw > 0.0 and self.setpoint_mw > self._ramp_start_mw:
|
||||
self._ramp_progress_mw = min(
|
||||
self.setpoint_mw - self._ramp_start_mw,
|
||||
self._ramp_progress_mw + ramp_rate * dt,
|
||||
)
|
||||
effective_setpoint = self._ramp_start_mw + self._ramp_progress_mw
|
||||
else:
|
||||
effective_setpoint = self.setpoint_mw
|
||||
|
||||
raw_power = state.power_output_mw
|
||||
# Begin filtering once we're in the vicinity of the setpoint to avoid chasing noise.
|
||||
if self._filtered_power_mw <= 0.0:
|
||||
self._filtered_power_mw = raw_power
|
||||
if raw_power > 0.7 * self.setpoint_mw:
|
||||
tau = constants.POWER_MEASUREMENT_TIME_CONSTANT
|
||||
alpha = clamp(dt / max(1e-6, tau), 0.0, 1.0)
|
||||
self._filtered_power_mw += alpha * (raw_power - self._filtered_power_mw)
|
||||
measured_power = self._filtered_power_mw
|
||||
else:
|
||||
measured_power = raw_power
|
||||
|
||||
error = (measured_power - effective_setpoint) / max(1e-6, effective_setpoint)
|
||||
near = measured_power > 0.9 * effective_setpoint
|
||||
# Deadband near setpoint to prevent dithering; only apply when we're close to target.
|
||||
if near and abs(error) < 0.01:
|
||||
self._advance_banks(self.rod_target, dt)
|
||||
return self.rod_fraction
|
||||
# Integrate a bit to remove steady-state error.
|
||||
self._integral_error = clamp(self._integral_error + error * dt, -0.05, 0.05)
|
||||
p_gain = 0.35 if not near else 0.2
|
||||
i_gain = 0.015 if not near else 0.01
|
||||
adjustment = p_gain * error + i_gain * self._integral_error
|
||||
speed = constants.CONTROL_ROD_SPEED * dt
|
||||
# Hard high-band clamp: above 5% over setpoint, freeze withdrawals; above 10%, insert faster.
|
||||
if measured_power > 1.1 * effective_setpoint:
|
||||
speed *= 0.4
|
||||
adjustment = -speed # force insertion at capped rate
|
||||
elif measured_power > 1.05 * effective_setpoint:
|
||||
adjustment = min(adjustment, 0.0)
|
||||
speed *= 0.6
|
||||
# Soft clamp above setpoint: if we're >5% high, enforce insertion at capped rate.
|
||||
if error > 0.1:
|
||||
adjustment = min(adjustment, 0.0)
|
||||
speed *= 0.5
|
||||
elif error > 0.05:
|
||||
adjustment = min(adjustment, adjustment)
|
||||
speed *= 0.7
|
||||
if near:
|
||||
speed *= 0.5 # slow down when near setpoint to avoid overshoot
|
||||
adjustment = clamp(adjustment, -speed, speed)
|
||||
self.rod_target = clamp(self.rod_target + adjustment, 0.0, 0.95)
|
||||
self._advance_banks(self.rod_target, dt)
|
||||
LOGGER.debug("Control rod target=%.3f (error=%.3f)", self.rod_target, error)
|
||||
return self.rod_fraction
|
||||
|
||||
def set_rods(self, fraction: float) -> float:
|
||||
previous = self.rod_fraction
|
||||
self.rod_fraction = clamp(fraction, 0.0, 0.95)
|
||||
LOGGER.info("Manual rod set %.3f -> %.3f", previous, self.rod_fraction)
|
||||
return self.rod_fraction
|
||||
self.rod_target = self._quantize_manual(fraction)
|
||||
self._advance_banks(self.rod_target, 0.0)
|
||||
LOGGER.info("Manual rod target set to %.3f", self.rod_target)
|
||||
return self.rod_target
|
||||
|
||||
def increment_rods(self, delta: float) -> float:
|
||||
return self.set_rods(self.rod_fraction + delta)
|
||||
|
||||
def scram(self) -> float:
|
||||
self.rod_fraction = 0.95
|
||||
self.rod_target = 0.95
|
||||
self.rod_banks = [0.95 for _ in self.rod_banks]
|
||||
self._sync_fraction()
|
||||
LOGGER.warning("SCRAM: rods fully inserted")
|
||||
return self.rod_fraction
|
||||
|
||||
@@ -59,13 +132,86 @@ class ControlSystem:
|
||||
self.manual_control = manual
|
||||
LOGGER.info("Rod control %s", "manual" if manual else "automatic")
|
||||
|
||||
def coolant_demand(self, primary: CoolantLoopState) -> float:
|
||||
desired_temp = 580.0
|
||||
error = (primary.temperature_out - desired_temp) / 100.0
|
||||
demand = clamp(0.8 - error, 0.0, 1.0)
|
||||
LOGGER.debug("Coolant demand %.2f for outlet %.1fK", demand, primary.temperature_out)
|
||||
def safety_backoff(self, subcooling_margin: float | None, dnb_margin: float | None, dt: float) -> None:
|
||||
"""Insert rods proactively when thermal margins are thin."""
|
||||
if self.manual_control:
|
||||
return
|
||||
severity = 0.0
|
||||
if subcooling_margin is not None:
|
||||
severity = max(severity, max(0.0, 3.0 - subcooling_margin) / 3.0)
|
||||
if dnb_margin is not None:
|
||||
severity = max(severity, max(0.0, 0.7 - dnb_margin) / 0.7)
|
||||
if severity <= 0.0:
|
||||
return
|
||||
backoff = (0.001 + 0.01 * severity) * dt
|
||||
self.rod_target = clamp(self.rod_target + backoff, 0.0, 0.95)
|
||||
self._advance_banks(self.rod_target, dt)
|
||||
LOGGER.debug("Safety backoff applied: target=%.3f severity=%.2f", self.rod_target, severity)
|
||||
|
||||
def coolant_demand(
|
||||
self,
|
||||
primary: CoolantLoopState,
|
||||
core_power_mw: float | None = None,
|
||||
electrical_output_mw: float | None = None,
|
||||
) -> float:
|
||||
desired_temp = constants.PRIMARY_OUTLET_TARGET_K
|
||||
# Increase demand when outlet is hotter than desired, reduce when cooler.
|
||||
temp_error = (primary.temperature_out - desired_temp) / 100.0
|
||||
demand = 0.8 + temp_error
|
||||
# Keep a light power-proportional floor so both pumps stay spinning without flooding the loop.
|
||||
power_floor = 0.0
|
||||
if core_power_mw is not None:
|
||||
power_fraction = clamp(core_power_mw / constants.NORMAL_CORE_POWER_MW, 0.0, 1.5)
|
||||
power_floor = 0.2 + 0.25 * power_fraction
|
||||
demand = max(demand, power_floor)
|
||||
# At power, keep primary pumps near full speed to preserve pressure/subcooling.
|
||||
if core_power_mw is not None and core_power_mw > 500.0:
|
||||
demand = max(demand, 0.8)
|
||||
elif core_power_mw is not None and core_power_mw > 100.0:
|
||||
demand = max(demand, 0.6)
|
||||
demand = clamp(demand, 0.0, 1.0)
|
||||
LOGGER.debug(
|
||||
"Coolant demand %.2f (temp_error=%.2f, power_floor=%.2f) for outlet %.1fK power %.1f MW elec %.1f MW",
|
||||
demand,
|
||||
temp_error,
|
||||
power_floor,
|
||||
primary.temperature_out,
|
||||
core_power_mw or 0.0,
|
||||
electrical_output_mw or 0.0,
|
||||
)
|
||||
return demand
|
||||
|
||||
def effective_insertion(self) -> float:
|
||||
if not self.rod_banks:
|
||||
return self.rod_fraction
|
||||
weights = constants.CONTROL_ROD_BANK_WEIGHTS
|
||||
total = sum(weights)
|
||||
effective = sum(w * b for w, b in zip(weights, self.rod_banks)) / total
|
||||
return clamp(effective, 0.0, 0.95)
|
||||
|
||||
def _advance_banks(self, target: float, dt: float) -> None:
|
||||
speed = constants.CONTROL_ROD_SPEED * dt
|
||||
new_banks: list[float] = []
|
||||
for idx, pos in enumerate(self.rod_banks):
|
||||
direction = 1 if target > pos else -1
|
||||
step = direction * speed
|
||||
updated = clamp(pos + step, 0.0, 0.95)
|
||||
# Avoid overshoot
|
||||
if (direction > 0 and updated > target) or (direction < 0 and updated < target):
|
||||
updated = target
|
||||
new_banks.append(updated)
|
||||
self.rod_banks = new_banks
|
||||
self._sync_fraction()
|
||||
|
||||
def _sync_fraction(self) -> None:
|
||||
self.rod_fraction = self.effective_insertion()
|
||||
|
||||
def _quantize_manual(self, fraction: float) -> float:
|
||||
step = constants.ROD_MANUAL_STEP
|
||||
quantized = round(fraction / step) * step
|
||||
return clamp(quantized, 0.0, 0.95)
|
||||
|
||||
|
||||
def save_state(
|
||||
self,
|
||||
filepath: str,
|
||||
@@ -77,6 +223,9 @@ class ControlSystem:
|
||||
"control": {
|
||||
"setpoint_mw": self.setpoint_mw,
|
||||
"rod_fraction": self.rod_fraction,
|
||||
"manual_control": self.manual_control,
|
||||
"rod_banks": self.rod_banks,
|
||||
"rod_target": self.rod_target,
|
||||
},
|
||||
"plant": plant_state.to_dict(),
|
||||
"metadata": metadata or {},
|
||||
@@ -94,6 +243,10 @@ class ControlSystem:
|
||||
control = data.get("control", {})
|
||||
self.setpoint_mw = control.get("setpoint_mw", self.setpoint_mw)
|
||||
self.rod_fraction = control.get("rod_fraction", self.rod_fraction)
|
||||
self.manual_control = control.get("manual_control", self.manual_control)
|
||||
self.rod_banks = control.get("rod_banks", self.rod_banks) or self.rod_banks
|
||||
self.rod_target = control.get("rod_target", self.rod_fraction)
|
||||
self._sync_fraction()
|
||||
plant = PlantState.from_dict(data["plant"])
|
||||
LOGGER.info("Loaded plant state from %s", path)
|
||||
return plant, data.get("metadata", {}), data.get("health")
|
||||
|
||||
@@ -5,6 +5,7 @@ from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
|
||||
from . import constants
|
||||
from .state import CoolantLoopState
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
@@ -14,11 +15,22 @@ LOGGER = logging.getLogger(__name__)
|
||||
class Pump:
|
||||
nominal_flow: float
|
||||
efficiency: float = 0.9
|
||||
shutoff_head_mpa: float = 6.0
|
||||
spool_time: float = constants.PUMP_SPOOL_TIME
|
||||
|
||||
def flow_rate(self, demand: float) -> float:
|
||||
demand = max(0.0, min(1.0, demand))
|
||||
return self.nominal_flow * (0.2 + 0.8 * demand) * self.efficiency
|
||||
|
||||
def performance(self, demand: float) -> tuple[float, float]:
|
||||
"""Return (flow_kg_s, head_mpa) at the given demand using a simple pump curve."""
|
||||
demand = max(0.0, min(1.0, demand))
|
||||
flow = self.flow_rate(demand)
|
||||
flow_frac = flow / max(1e-3, self.nominal_flow)
|
||||
# Keep a healthy head near nominal flow; fall off gently beyond the rated point.
|
||||
head = self.shutoff_head_mpa * max(0.2, 1.0 - 0.4 * max(0.0, flow_frac))
|
||||
return flow, head
|
||||
|
||||
def step(self, loop: CoolantLoopState, demand: float) -> None:
|
||||
loop.mass_flow_rate = self.flow_rate(demand)
|
||||
loop.pressure = 12.0 * demand + 2.0
|
||||
|
||||
@@ -13,7 +13,43 @@ from . import constants
|
||||
from .commands import ReactorCommand
|
||||
from .reactor import Reactor
|
||||
from .simulation import ReactorSimulation
|
||||
from .state import PlantState
|
||||
from .state import PlantState, PumpState
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _build_numpad_mapping() -> dict[int, float]:
|
||||
# Use keypad matrix constants when available; skip missing ones to avoid import errors on some terminals.
|
||||
mapping: dict[int, float] = {}
|
||||
table = {
|
||||
"KEY_C1": 0.1, # numpad 1
|
||||
"KEY_C2": 0.2, # numpad 2
|
||||
"KEY_C3": 0.3, # numpad 3
|
||||
"KEY_B1": 0.4, # numpad 4
|
||||
"KEY_B2": 0.5, # numpad 5
|
||||
"KEY_B3": 0.6, # numpad 6
|
||||
"KEY_A1": 0.7, # numpad 7
|
||||
"KEY_A2": 0.8, # numpad 8
|
||||
"KEY_A3": 0.9, # numpad 9
|
||||
# Common keypad aliases when NumLock is on
|
||||
"KEY_END": 0.1,
|
||||
"KEY_DOWN": 0.2,
|
||||
"KEY_NPAGE": 0.3,
|
||||
"KEY_LEFT": 0.4,
|
||||
"KEY_B2": 0.5, # center stays 0.5
|
||||
"KEY_RIGHT": 0.6,
|
||||
"KEY_HOME": 0.7,
|
||||
"KEY_UP": 0.8,
|
||||
"KEY_PPAGE": 0.9,
|
||||
}
|
||||
for name, value in table.items():
|
||||
code = getattr(curses, name, None)
|
||||
if code is not None:
|
||||
mapping[code] = value
|
||||
return mapping
|
||||
|
||||
|
||||
_NUMPAD_ROD_KEYS = _build_numpad_mapping()
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -40,28 +76,56 @@ class ReactorDashboard:
|
||||
self.sim: Optional[ReactorSimulation] = None
|
||||
self.quit_requested = False
|
||||
self.reset_requested = False
|
||||
self.log_buffer: deque[str] = deque(maxlen=4)
|
||||
self.page = 1 # 1=metrics, 2=schematic (placeholder)
|
||||
self._last_state: Optional[PlantState] = None
|
||||
self._trend_history: deque[tuple[float, float, float]] = deque(maxlen=120)
|
||||
self.log_buffer: deque[str] = deque(maxlen=8)
|
||||
self._log_handler: Optional[logging.Handler] = None
|
||||
self._previous_handlers: list[logging.Handler] = []
|
||||
self._logger = logging.getLogger("reactor_sim")
|
||||
self.keys = [
|
||||
self.help_sections: list[tuple[str, list[DashboardKey]]] = [
|
||||
(
|
||||
"Reactor / Safety",
|
||||
[
|
||||
DashboardKey("q", "Quit & save"),
|
||||
DashboardKey("space", "SCRAM"),
|
||||
DashboardKey("p", "Toggle primary pump"),
|
||||
DashboardKey("o", "Toggle secondary pump"),
|
||||
DashboardKey("t", "Toggle turbine"),
|
||||
DashboardKey("1/2/3", "Toggle turbine units 1-3"),
|
||||
DashboardKey("r", "Reset & clear state"),
|
||||
DashboardKey("a", "Toggle auto rod control"),
|
||||
DashboardKey("F1/F2", "Metrics / schematic views"),
|
||||
DashboardKey("+/-", "Withdraw/insert rods"),
|
||||
DashboardKey("1-9 / Numpad", "Set rods to 0.1 … 0.9 (manual)"),
|
||||
DashboardKey("[/]", "Adjust consumer demand −/+50 MW"),
|
||||
DashboardKey("s/d", "Setpoint −/+250 MW"),
|
||||
DashboardKey("p", "Maintain core (shutdown required)"),
|
||||
],
|
||||
),
|
||||
(
|
||||
"Pumps",
|
||||
[
|
||||
DashboardKey("g/h", "Toggle primary pump 1/2"),
|
||||
DashboardKey("j/k", "Toggle secondary pump 1/2"),
|
||||
DashboardKey("m/n", "Maintain primary pumps 1/2"),
|
||||
DashboardKey(",/.", "Maintain secondary pumps 1/2"),
|
||||
],
|
||||
),
|
||||
(
|
||||
"Generators",
|
||||
[
|
||||
DashboardKey("b/v", "Toggle generator 1/2"),
|
||||
DashboardKey("x", "Toggle generator auto"),
|
||||
DashboardKey("l/;", "Toggle relief primary/secondary"),
|
||||
DashboardKey("B/V", "Maintain generator 1/2"),
|
||||
],
|
||||
),
|
||||
(
|
||||
"Turbines / Grid",
|
||||
[
|
||||
DashboardKey("t", "Toggle turbine bank"),
|
||||
DashboardKey("Shift+1/2/3", "Toggle turbine units 1-3"),
|
||||
DashboardKey("y/u/i", "Maintain turbine 1/2/3"),
|
||||
DashboardKey("c", "Toggle consumer"),
|
||||
DashboardKey("r", "Reset & clear state"),
|
||||
DashboardKey("m", "Maintain primary pump"),
|
||||
DashboardKey("n", "Maintain secondary pump"),
|
||||
DashboardKey("k", "Maintain core (requires shutdown)"),
|
||||
DashboardKey("+/-", "Withdraw/insert rods"),
|
||||
DashboardKey("[/]", "Adjust consumer demand −/+50 MW"),
|
||||
DashboardKey("s", "Setpoint −250 MW"),
|
||||
DashboardKey("d", "Setpoint +250 MW"),
|
||||
DashboardKey("a", "Toggle auto rod control"),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
def run(self) -> None:
|
||||
@@ -76,6 +140,7 @@ class ReactorDashboard:
|
||||
curses.init_pair(3, curses.COLOR_GREEN, -1)
|
||||
curses.init_pair(4, curses.COLOR_RED, -1)
|
||||
stdscr.nodelay(True)
|
||||
stdscr.keypad(True)
|
||||
self._install_log_capture()
|
||||
try:
|
||||
while True:
|
||||
@@ -89,9 +154,13 @@ class ReactorDashboard:
|
||||
self.sim.start_state = self.start_state
|
||||
try:
|
||||
for state in self.sim.run():
|
||||
self._last_state = state
|
||||
self._draw(stdscr, state)
|
||||
self._handle_input(stdscr)
|
||||
if self.quit_requested or self.reset_requested:
|
||||
# Persist the latest state if we are exiting early.
|
||||
if self.sim:
|
||||
self.sim.last_state = state
|
||||
self.sim.stop()
|
||||
break
|
||||
finally:
|
||||
@@ -112,24 +181,64 @@ class ReactorDashboard:
|
||||
ch = stdscr.getch()
|
||||
if ch == -1:
|
||||
break
|
||||
keyname = None
|
||||
try:
|
||||
keyname = curses.keyname(ch)
|
||||
except curses.error:
|
||||
keyname = None
|
||||
if ch in (ord("q"), ord("Q")):
|
||||
self.quit_requested = True
|
||||
return
|
||||
if ch == ord(" "):
|
||||
self._queue_command(ReactorCommand.scram_all())
|
||||
elif ch in (ord("p"), ord("P")):
|
||||
self._queue_command(ReactorCommand(primary_pump_on=not self.reactor.primary_pump_active))
|
||||
elif ch in (ord("o"), ord("O")):
|
||||
self._queue_command(ReactorCommand(secondary_pump_on=not self.reactor.secondary_pump_active))
|
||||
continue
|
||||
elif ch in (ord("g"), ord("G")):
|
||||
self._toggle_primary_pump_unit(0)
|
||||
elif ch in (ord("h"), ord("H")):
|
||||
self._toggle_primary_pump_unit(1)
|
||||
elif ch in (ord("j"), ord("J")):
|
||||
self._toggle_secondary_pump_unit(0)
|
||||
elif ch in (ord("k"), ord("K")):
|
||||
self._toggle_secondary_pump_unit(1)
|
||||
elif ch in (ord("p"), ord("P")):
|
||||
self._queue_command(ReactorCommand.maintain("core"))
|
||||
elif ch in (ord("b"), ord("B")):
|
||||
self._toggle_generator_unit(0)
|
||||
elif ch in (ord("v"), ord("V")):
|
||||
self._toggle_generator_unit(1)
|
||||
elif ch == ord("l"):
|
||||
self._queue_command(ReactorCommand(primary_relief=not self.reactor.primary_relief_open))
|
||||
elif ch == ord(";"):
|
||||
self._queue_command(ReactorCommand(secondary_relief=not self.reactor.secondary_relief_open))
|
||||
elif ch in (ord("x"), ord("X")):
|
||||
self._queue_command(ReactorCommand(generator_auto=not self.reactor.generator_auto))
|
||||
elif ch in (ord("t"), ord("T")):
|
||||
self._queue_command(ReactorCommand(turbine_on=not self.reactor.turbine_active))
|
||||
elif keyname and keyname.decode(errors="ignore") in ("!", "@", "#", '"'):
|
||||
name = keyname.decode(errors="ignore")
|
||||
turbine_hotkeys = {"!": 0, "@": 1, "#": 2, '"': 1}
|
||||
self._toggle_turbine_unit(turbine_hotkeys[name])
|
||||
elif ch in (ord("!"), ord("@"), ord("#"), ord('"')):
|
||||
turbine_hotkeys = {ord("!"): 0, ord("@"): 1, ord("#"): 2, ord('"'): 1}
|
||||
self._toggle_turbine_unit(turbine_hotkeys[ch])
|
||||
elif keyname and keyname.startswith(b"KP_") and keyname[-1:] in b"123456789":
|
||||
target = (keyname[-1] - ord("0")) / 10.0 # type: ignore[arg-type]
|
||||
self._queue_command(ReactorCommand(rod_position=target, rod_manual=True))
|
||||
elif ord("1") <= ch <= ord("9"):
|
||||
idx = ch - ord("1")
|
||||
self._toggle_turbine_unit(idx)
|
||||
target = (ch - ord("0")) / 10.0
|
||||
self._queue_command(ReactorCommand(rod_position=target, rod_manual=True))
|
||||
elif ch in _NUMPAD_ROD_KEYS:
|
||||
self._queue_command(ReactorCommand(rod_position=_NUMPAD_ROD_KEYS[ch], rod_manual=True))
|
||||
elif curses.KEY_F1 <= ch <= curses.KEY_F9:
|
||||
target = (ch - curses.KEY_F1 + 1) / 10.0
|
||||
self._queue_command(ReactorCommand(rod_position=target, rod_manual=True))
|
||||
elif ch in (ord("+"), ord("=")):
|
||||
self._queue_command(ReactorCommand(rod_position=self._clamped_rod(-0.05)))
|
||||
# Insert rods (increase fraction)
|
||||
self._queue_command(ReactorCommand(rod_position=self._clamped_rod(constants.ROD_MANUAL_STEP)))
|
||||
elif ch == ord("-"):
|
||||
self._queue_command(ReactorCommand(rod_position=self._clamped_rod(0.05)))
|
||||
# Withdraw rods (decrease fraction)
|
||||
self._queue_command(ReactorCommand(rod_position=self._clamped_rod(-constants.ROD_MANUAL_STEP)))
|
||||
elif ch == ord("["):
|
||||
demand = self._current_demand() - 50.0
|
||||
self._queue_command(ReactorCommand(consumer_demand=max(0.0, demand)))
|
||||
@@ -148,11 +257,17 @@ class ReactorDashboard:
|
||||
elif ch in (ord("a"), ord("A")):
|
||||
self._queue_command(ReactorCommand(rod_manual=not self.reactor.control.manual_control))
|
||||
elif ch in (ord("m"), ord("M")):
|
||||
self._queue_command(ReactorCommand.maintain("primary_pump"))
|
||||
self._queue_command(ReactorCommand.maintain("primary_pump_1"))
|
||||
elif ch in (ord("n"), ord("N")):
|
||||
self._queue_command(ReactorCommand.maintain("secondary_pump"))
|
||||
elif ch in (ord("k"), ord("K")):
|
||||
self._queue_command(ReactorCommand.maintain("core"))
|
||||
self._queue_command(ReactorCommand.maintain("primary_pump_2"))
|
||||
elif ch == ord(","):
|
||||
self._queue_command(ReactorCommand.maintain("secondary_pump_1"))
|
||||
elif ch == ord("."):
|
||||
self._queue_command(ReactorCommand.maintain("secondary_pump_2"))
|
||||
elif ch in (ord("B"),):
|
||||
self._queue_command(ReactorCommand.maintain("generator_1"))
|
||||
elif ch in (ord("V"),):
|
||||
self._queue_command(ReactorCommand.maintain("generator_2"))
|
||||
elif ch in (ord("y"), ord("Y")):
|
||||
self._queue_command(ReactorCommand.maintain("turbine_1"))
|
||||
elif ch in (ord("u"), ord("U")):
|
||||
@@ -185,6 +300,25 @@ class ReactorDashboard:
|
||||
current = self.reactor.turbine_unit_active[index]
|
||||
self._queue_command(ReactorCommand(turbine_units={index + 1: not current}))
|
||||
|
||||
def _toggle_primary_pump_unit(self, index: int) -> None:
|
||||
if index < 0 or index >= len(self.reactor.primary_pump_units):
|
||||
return
|
||||
current = self.reactor.primary_pump_units[index]
|
||||
self._queue_command(ReactorCommand(primary_pumps={index + 1: not current}))
|
||||
|
||||
def _toggle_secondary_pump_unit(self, index: int) -> None:
|
||||
if index < 0 or index >= len(self.reactor.secondary_pump_units):
|
||||
return
|
||||
current = self.reactor.secondary_pump_units[index]
|
||||
self._queue_command(ReactorCommand(secondary_pumps={index + 1: not current}))
|
||||
|
||||
def _toggle_generator_unit(self, index: int) -> None:
|
||||
current = False
|
||||
if self._last_state and index < len(self._last_state.generators):
|
||||
gen = self._last_state.generators[index]
|
||||
current = gen.running or gen.starting
|
||||
self._queue_command(ReactorCommand(generator_units={index + 1: not current}))
|
||||
|
||||
def _request_reset(self) -> None:
|
||||
self.reset_requested = True
|
||||
if self.sim:
|
||||
@@ -205,6 +339,7 @@ class ReactorDashboard:
|
||||
self.reactor = Reactor.default()
|
||||
self.start_state = None
|
||||
self.pending_command = None
|
||||
self._last_state = None
|
||||
self.reset_requested = False
|
||||
self.log_buffer.clear()
|
||||
|
||||
@@ -217,26 +352,34 @@ class ReactorDashboard:
|
||||
def _draw(self, stdscr: "curses._CursesWindow", state: PlantState) -> None:
|
||||
stdscr.erase()
|
||||
height, width = stdscr.getmaxyx()
|
||||
if height < 24 or width < 90:
|
||||
min_status = 6
|
||||
if height < min_status + 12 or width < 70:
|
||||
stdscr.addstr(
|
||||
0,
|
||||
0,
|
||||
"Terminal window too small. Resize to at least 90x24.".ljust(width),
|
||||
"Terminal too small; try >=70x16 or reduce font size.".ljust(width),
|
||||
curses.color_pair(4),
|
||||
)
|
||||
stdscr.refresh()
|
||||
return
|
||||
|
||||
data_height = height - 6
|
||||
right_width = max(32, width // 3)
|
||||
left_width = width - right_width
|
||||
if left_width < 60:
|
||||
left_width = min(60, width - 20)
|
||||
right_width = width - left_width
|
||||
log_rows = max(2, min(len(self.log_buffer) + 2, 8))
|
||||
status_height = min(height - 1, max(min_status, min_status + log_rows))
|
||||
data_height = max(1, height - status_height)
|
||||
gap = 2
|
||||
right_width = max(28, width // 3)
|
||||
left_width = width - right_width - gap
|
||||
if left_width < 50:
|
||||
left_width = min(50, width - (18 + gap))
|
||||
right_width = width - left_width - gap
|
||||
|
||||
data_height = max(1, data_height)
|
||||
left_width = max(1, left_width)
|
||||
right_width = max(1, right_width)
|
||||
|
||||
data_win = stdscr.derwin(data_height, left_width, 0, 0)
|
||||
help_win = stdscr.derwin(data_height, right_width, 0, left_width)
|
||||
status_win = stdscr.derwin(6, width, data_height, 0)
|
||||
help_win = stdscr.derwin(data_height, right_width, 0, left_width + gap)
|
||||
status_win = stdscr.derwin(status_height, width, data_height, 0)
|
||||
|
||||
self._draw_data_panel(data_win, state)
|
||||
self._draw_help_panel(help_win)
|
||||
@@ -247,84 +390,186 @@ class ReactorDashboard:
|
||||
win.erase()
|
||||
win.box()
|
||||
win.addstr(0, 2, " Plant Overview ", curses.color_pair(1) | curses.A_BOLD)
|
||||
y = 2
|
||||
y = self._draw_section(
|
||||
win,
|
||||
y,
|
||||
self._update_trends(state)
|
||||
height, width = win.getmaxyx()
|
||||
inner_height = height - 2
|
||||
inner_width = width - 2
|
||||
left_width = max(28, inner_width // 2)
|
||||
right_width = inner_width - left_width
|
||||
left_win = win.derwin(inner_height, left_width, 1, 1)
|
||||
right_win = win.derwin(inner_height, right_width, 1, 1 + left_width)
|
||||
for row in range(1, height - 1):
|
||||
win.addch(row, 1 + left_width, curses.ACS_VLINE)
|
||||
if left_width + 1 < width - 1:
|
||||
win.addch(row, 1 + left_width + 1, curses.ACS_VLINE)
|
||||
|
||||
left_win.erase()
|
||||
right_win.erase()
|
||||
|
||||
left_y = 0
|
||||
left_y = self._draw_section(
|
||||
left_win,
|
||||
left_y,
|
||||
"Core",
|
||||
[
|
||||
("Fuel Temp", f"{state.core.fuel_temperature:8.1f} K"),
|
||||
("Core Power", f"{state.core.power_output_mw:8.1f} MW"),
|
||||
(
|
||||
"Fuel Temp",
|
||||
f"{state.core.fuel_temperature:6.1f} K (Max {constants.CORE_MELTDOWN_TEMPERATURE:4.0f})",
|
||||
),
|
||||
(
|
||||
"Core Power",
|
||||
f"{state.core.power_output_mw:6.1f} MW (Nom {constants.NORMAL_CORE_POWER_MW:4.0f}/Max {constants.TEST_MAX_POWER_MW:4.0f})",
|
||||
),
|
||||
("Neutron Flux", f"{state.core.neutron_flux:10.2e}"),
|
||||
("Rods", f"{self.reactor.control.rod_fraction:.3f}"),
|
||||
("Rod Mode", "AUTO" if not self.reactor.control.manual_control else "MANUAL"),
|
||||
("Setpoint", f"{self.reactor.control.setpoint_mw:7.0f} MW"),
|
||||
("Reactivity", f"{state.core.reactivity_margin:+.4f}"),
|
||||
("Boron", f"{state.boron_ppm:7.1f} ppm"),
|
||||
("P(meas)", f"{self._measured_power(state):6.1f} MW"),
|
||||
],
|
||||
)
|
||||
y = self._draw_section(win, y, "Key Poisons / Emitters", self._poison_lines(state))
|
||||
y = self._draw_section(
|
||||
win,
|
||||
y,
|
||||
left_y = self._draw_section(
|
||||
left_win,
|
||||
left_y,
|
||||
"Trends",
|
||||
self._trend_lines(state),
|
||||
)
|
||||
left_y = self._draw_section(left_win, left_y, "Key Poisons / Emitters", self._poison_lines(state))
|
||||
left_y = self._draw_section(
|
||||
left_win,
|
||||
left_y,
|
||||
"Primary Loop",
|
||||
[
|
||||
("Pump", "ON" if self.reactor.primary_pump_active else "OFF"),
|
||||
("Flow", f"{state.primary_loop.mass_flow_rate:7.0f} kg/s"),
|
||||
("Pump1", self._pump_status(state.primary_pumps, 0)),
|
||||
("Pump2", self._pump_status(state.primary_pumps, 1)),
|
||||
(
|
||||
"Flow",
|
||||
f"{state.primary_loop.mass_flow_rate:7.0f}/{self.reactor.primary_pump.nominal_flow * len(self.reactor.primary_pump_units):.0f} kg/s",
|
||||
),
|
||||
("Level", f"{state.primary_loop.level*100:6.1f}%"),
|
||||
("Inlet Temp", f"{state.primary_loop.temperature_in:7.1f} K"),
|
||||
("Outlet Temp", f"{state.primary_loop.temperature_out:7.1f} K"),
|
||||
("Pressure", f"{state.primary_loop.pressure:5.2f} MPa"),
|
||||
("Outlet Temp", f"{state.primary_loop.temperature_out:7.1f} K (Target {constants.PRIMARY_OUTLET_TARGET_K:4.0f})"),
|
||||
("Pressure", f"{state.primary_loop.pressure:5.2f}/{constants.MAX_PRESSURE:4.1f} MPa"),
|
||||
("Pressurizer", f"{self.reactor.pressurizer_level*100:6.1f}% @ {constants.PRIMARY_PRESSURIZER_SETPOINT_MPA:4.1f} MPa"),
|
||||
("Relief", "OPEN" if self.reactor.primary_relief_open else "CLOSED"),
|
||||
],
|
||||
)
|
||||
y = self._draw_section(
|
||||
win,
|
||||
y,
|
||||
self._draw_section(
|
||||
left_win,
|
||||
left_y,
|
||||
"Secondary Loop",
|
||||
[
|
||||
("Pump", "ON" if self.reactor.secondary_pump_active else "OFF"),
|
||||
("Flow", f"{state.secondary_loop.mass_flow_rate:7.0f} kg/s"),
|
||||
("Inlet Temp", f"{state.secondary_loop.temperature_in:7.1f} K"),
|
||||
("Pressure", f"{state.secondary_loop.pressure:5.2f} MPa"),
|
||||
("Steam Quality", f"{state.secondary_loop.steam_quality:5.2f}"),
|
||||
("Pump1", self._pump_status(state.secondary_pumps, 0)),
|
||||
("Pump2", self._pump_status(state.secondary_pumps, 1)),
|
||||
(
|
||||
"Flow",
|
||||
f"{state.secondary_loop.mass_flow_rate:7.0f}/{self.reactor.secondary_pump.nominal_flow * len(self.reactor.secondary_pump_units):.0f} kg/s",
|
||||
),
|
||||
("Level", f"{state.secondary_loop.level*100:6.1f}% (Target {constants.SECONDARY_INVENTORY_TARGET*100:4.0f}%)"),
|
||||
(
|
||||
"Feedwater",
|
||||
f"valve {self.reactor.feedwater_valve*100:5.1f}% steam {state.secondary_loop.mass_flow_rate * max(0.0, state.secondary_loop.steam_quality):6.0f} kg/s",
|
||||
),
|
||||
("Inlet Temp", f"{state.secondary_loop.temperature_in:7.1f} K (Target {constants.SECONDARY_OUTLET_TARGET_K:4.0f})"),
|
||||
("Outlet Temp", f"{state.secondary_loop.temperature_out:7.1f} K (Target {constants.SECONDARY_OUTLET_TARGET_K:4.0f})"),
|
||||
("Pressure", f"{state.secondary_loop.pressure:5.2f}/{constants.MAX_PRESSURE:4.1f} MPa"),
|
||||
("Steam Quality", f"{state.secondary_loop.steam_quality:5.2f}/1.00"),
|
||||
("Relief", "OPEN" if self.reactor.secondary_relief_open else "CLOSED"),
|
||||
],
|
||||
)
|
||||
|
||||
right_y = 0
|
||||
consumer_status = "n/a"
|
||||
consumer_demand = 0.0
|
||||
if self.reactor.consumer:
|
||||
consumer_status = "ONLINE" if self.reactor.consumer.online else "OFF"
|
||||
consumer_demand = self.reactor.consumer.demand_mw
|
||||
y = self._draw_section(
|
||||
win,
|
||||
y,
|
||||
right_y = self._draw_section(
|
||||
right_win,
|
||||
right_y,
|
||||
"Turbine / Grid",
|
||||
[
|
||||
("Turbines", " ".join(self._turbine_status_lines())),
|
||||
("Electrical", f"{state.total_electrical_output():7.1f} MW"),
|
||||
("Load", f"{self._total_load_supplied(state):7.1f}/{self._total_load_demand(state):7.1f} MW"),
|
||||
("Consumer", f"{consumer_status}"),
|
||||
("Demand", f"{consumer_demand:7.1f} MW"),
|
||||
("Rated Elec", f"{len(self.reactor.turbines)*self.reactor.turbines[0].rated_output_mw:7.1f} MW"),
|
||||
(
|
||||
"Steam",
|
||||
f"h={state.turbines[0].steam_enthalpy:5.0f} kJ/kg avail {self._steam_available_power(state):6.1f} MW "
|
||||
f"flow {state.secondary_loop.mass_flow_rate * max(0.0, state.secondary_loop.steam_quality):6.0f} kg/s"
|
||||
if state.turbines
|
||||
else "n/a",
|
||||
),
|
||||
(
|
||||
"Units Elec",
|
||||
" ".join([f"{t.electrical_output_mw:6.1f}MW" for t in state.turbines]) if state.turbines else "n/a",
|
||||
),
|
||||
(
|
||||
"Governor",
|
||||
(
|
||||
f"thr {self.reactor.turbines[0].throttle:4.2f}→{self._desired_throttle(state.turbines[0]):4.2f} "
|
||||
f"ΔP {(state.turbines[0].load_demand_mw - state.turbines[0].electrical_output_mw):6.1f} MW"
|
||||
)
|
||||
if state.turbines
|
||||
else "n/a",
|
||||
),
|
||||
(
|
||||
"Condenser",
|
||||
(
|
||||
f"P={state.turbines[0].condenser_pressure:4.2f}/{constants.CONDENSER_MAX_PRESSURE_MPA:4.2f} MPa "
|
||||
f"T={state.turbines[0].condenser_temperature:6.1f}K Foul={state.turbines[0].fouling_penalty*100:4.1f}%"
|
||||
)
|
||||
if state.turbines
|
||||
else "n/a",
|
||||
),
|
||||
("Electrical", f"{state.total_electrical_output():7.1f} MW | Load {self._total_load_supplied(state):6.1f}/{self._total_load_demand(state):6.1f} MW"),
|
||||
("Consumer", f"{consumer_status} demand {consumer_demand:6.1f} MW"),
|
||||
],
|
||||
)
|
||||
self._draw_health_bar(win, y + 1)
|
||||
right_y = self._draw_section(right_win, right_y, "Generators", self._generator_lines(state))
|
||||
right_y = self._draw_section(right_win, right_y, "Power Stats", self._power_lines(state))
|
||||
right_y = self._draw_section(right_win, right_y, "Heat Exchanger", self._heat_exchanger_lines(state))
|
||||
right_y = self._draw_section(right_win, right_y, "Protections / Warnings", self._protection_lines(state))
|
||||
right_y = self._draw_section(right_win, right_y, "Maintenance", self._maintenance_lines())
|
||||
self._draw_health_bars(right_win, right_y)
|
||||
|
||||
def _draw_help_panel(self, win: "curses._CursesWindow") -> None:
|
||||
def _add_safe(row: int, col: int, text: str, attr: int = 0) -> bool:
|
||||
max_y, max_x = win.getmaxyx()
|
||||
if row >= max_y - 1 or col >= max_x - 1:
|
||||
return False
|
||||
clipped = text[: max(0, max_x - col - 1)]
|
||||
try:
|
||||
win.addstr(row, col, clipped, attr)
|
||||
except curses.error:
|
||||
return False
|
||||
return True
|
||||
|
||||
win.erase()
|
||||
win.box()
|
||||
win.addstr(0, 2, " Controls ", curses.color_pair(1) | curses.A_BOLD)
|
||||
_add_safe(0, 2, " Controls ", curses.color_pair(1) | curses.A_BOLD)
|
||||
y = 2
|
||||
for entry in self.keys:
|
||||
win.addstr(y, 2, f"{entry.key:<8} {entry.description}")
|
||||
for title, entries in self.help_sections:
|
||||
if not _add_safe(y, 2, title, curses.color_pair(1) | curses.A_BOLD):
|
||||
return
|
||||
y += 1
|
||||
win.addstr(y + 1, 2, "Tips:", curses.color_pair(2) | curses.A_BOLD)
|
||||
for entry in entries:
|
||||
if not _add_safe(y, 4, f"{entry.key:<8} {entry.description}"):
|
||||
return
|
||||
y += 1
|
||||
y += 1
|
||||
if not _add_safe(y, 2, "Tips:", curses.color_pair(2) | curses.A_BOLD):
|
||||
return
|
||||
tips = [
|
||||
"Start pumps before withdrawing rods.",
|
||||
"Bring turbine and consumer online after thermal stabilization.",
|
||||
"Toggle turbine units (1/2/3) for staggered maintenance.",
|
||||
"Use m/n/k/y/u/i to request maintenance (stop equipment first).",
|
||||
"Use m/n/,/. for pump maintenance; B/V for generators.",
|
||||
"Press 'r' to reset/clear state if you want a cold start.",
|
||||
"Watch component health to avoid automatic trips.",
|
||||
"Watch component health, DNB margin, and subcooling to avoid automatic trips.",
|
||||
]
|
||||
for idx, tip in enumerate(tips, start=y + 2):
|
||||
win.addstr(idx, 4, f"- {tip}")
|
||||
if not _add_safe(idx, 4, f"- {tip}"):
|
||||
break
|
||||
|
||||
def _draw_status_panel(self, win: "curses._CursesWindow", state: PlantState) -> None:
|
||||
win.erase()
|
||||
@@ -334,7 +579,7 @@ class ReactorDashboard:
|
||||
f"Time {state.time_elapsed:7.1f}s | Rods {self.reactor.control.rod_fraction:.3f} | "
|
||||
f"Primary {'ON' if self.reactor.primary_pump_active else 'OFF'} | "
|
||||
f"Secondary {'ON' if self.reactor.secondary_pump_active else 'OFF'} | "
|
||||
f"Turbines {turbine_text}"
|
||||
f"Turbines {turbine_text} | Page {'Metrics' if self.page == 1 else 'Schematic'}"
|
||||
)
|
||||
win.addstr(1, 1, msg, curses.color_pair(3))
|
||||
if self.reactor.health_monitor.failure_log:
|
||||
@@ -344,6 +589,8 @@ class ReactorDashboard:
|
||||
f"Failures: {', '.join(self.reactor.health_monitor.failure_log)}",
|
||||
curses.color_pair(4) | curses.A_BOLD,
|
||||
)
|
||||
log_y = 4
|
||||
else:
|
||||
log_y = 3
|
||||
for record in list(self.log_buffer):
|
||||
if log_y >= win.getmaxyx()[0] - 1:
|
||||
@@ -357,7 +604,7 @@ class ReactorDashboard:
|
||||
win: "curses._CursesWindow",
|
||||
start_y: int,
|
||||
title: str,
|
||||
lines: list[tuple[str, str] | str],
|
||||
lines: list[tuple[str, str] | tuple[str, str, int] | str],
|
||||
) -> int:
|
||||
height, width = win.getmaxyx()
|
||||
inner_width = width - 4
|
||||
@@ -368,21 +615,55 @@ class ReactorDashboard:
|
||||
for line in lines:
|
||||
if row >= height - 1:
|
||||
break
|
||||
attr = 0
|
||||
if isinstance(line, tuple):
|
||||
if len(line) == 3:
|
||||
label, value, attr = line
|
||||
else:
|
||||
label, value = line
|
||||
text = f"{label:<18}: {value}"
|
||||
else:
|
||||
text = line
|
||||
win.addstr(row, 4, text[:inner_width])
|
||||
win.addstr(row, 4, text[:inner_width], attr)
|
||||
row += 1
|
||||
return row + 1
|
||||
|
||||
def _flow_arrow(self, flow: float) -> str:
|
||||
if flow > 15000:
|
||||
return "====>"
|
||||
if flow > 5000:
|
||||
return "===>"
|
||||
if flow > 500:
|
||||
return "->"
|
||||
return "--"
|
||||
|
||||
def _pump_glyph(self, pump_state: PumpState | None) -> str:
|
||||
if pump_state is None:
|
||||
return "·"
|
||||
status = getattr(pump_state, "status", "OFF")
|
||||
if status == "RUN":
|
||||
return "▶"
|
||||
if status == "CAV":
|
||||
return "!"
|
||||
if status == "STARTING":
|
||||
return ">"
|
||||
if status == "STOPPING":
|
||||
return "-"
|
||||
return "·"
|
||||
|
||||
|
||||
def _turbine_status_lines(self) -> list[str]:
|
||||
if not self.reactor.turbine_unit_active:
|
||||
return ["n/a"]
|
||||
return [
|
||||
f"{idx + 1}:{'ON' if active else 'OFF'}" for idx, active in enumerate(self.reactor.turbine_unit_active)
|
||||
]
|
||||
lines: list[str] = []
|
||||
for idx, active in enumerate(self.reactor.turbine_unit_active):
|
||||
label = f"{idx + 1}:"
|
||||
status = "ON" if active else "OFF"
|
||||
if idx < len(getattr(self._last_state, "turbines", [])):
|
||||
t_state = self._last_state.turbines[idx]
|
||||
status = getattr(t_state, "status", status)
|
||||
lines.append(f"{label}{status}")
|
||||
return lines
|
||||
|
||||
def _total_load_supplied(self, state: PlantState) -> float:
|
||||
return sum(t.load_supplied_mw for t in state.turbines)
|
||||
@@ -394,39 +675,213 @@ class ReactorDashboard:
|
||||
inventory = state.core.fission_product_inventory or {}
|
||||
particles = state.core.emitted_particles or {}
|
||||
lines: list[tuple[str, str]] = []
|
||||
def fmt(symbol: str, label: str) -> tuple[str, str]:
|
||||
qty = inventory.get(symbol, 0.0)
|
||||
def fmt(symbol: str, label: str, qty: float) -> tuple[str, str]:
|
||||
threshold = constants.KEY_POISON_THRESHOLDS.get(symbol)
|
||||
flag = " !" if threshold is not None and qty >= threshold else ""
|
||||
return (f"{label}{flag}", f"{qty:9.2e}")
|
||||
|
||||
lines.append(fmt("Xe", "Xe (xenon)"))
|
||||
lines.append(fmt("Sm", "Sm (samarium)"))
|
||||
lines.append(fmt("I", "I (iodine)"))
|
||||
lines.append(fmt("Xe", "Xe (xenon)", getattr(state.core, "xenon_inventory", 0.0)))
|
||||
lines.append(fmt("Sm", "Sm (samarium)", inventory.get("Sm", 0.0)))
|
||||
lines.append(fmt("I", "I (iodine)", getattr(state.core, "iodine_inventory", 0.0)))
|
||||
try:
|
||||
xe_penalty = -self.reactor.neutronics.xenon_penalty(state.core)
|
||||
lines.append(("Xe Δρ", f"{xe_penalty:+.4f}"))
|
||||
except Exception:
|
||||
pass
|
||||
lines.append(("Neutrons (src)", f"{particles.get('n', 0.0):9.2e}"))
|
||||
lines.append(("Gammas", f"{particles.get('gamma', 0.0):9.2e}"))
|
||||
lines.append(("Alphas", f"{particles.get('alpha', 0.0):9.2e}"))
|
||||
return lines
|
||||
|
||||
def _draw_health_bar(self, win: "curses._CursesWindow", start_y: int) -> None:
|
||||
def _health_lines(self) -> list[tuple[str, str]]:
|
||||
comps = self.reactor.health_monitor.components
|
||||
lines: list[tuple[str, str]] = []
|
||||
for name, comp in comps.items():
|
||||
pct = f"{comp.integrity*100:5.1f}%"
|
||||
state = "FAILED" if comp.failed else pct
|
||||
lines.append((name, state))
|
||||
return lines
|
||||
|
||||
def _maintenance_lines(self) -> list[tuple[str, str]]:
|
||||
if not self.reactor.maintenance_active:
|
||||
return [("Active", "None")]
|
||||
return [(comp, "IN PROGRESS") for comp in sorted(self.reactor.maintenance_active)]
|
||||
|
||||
def _generator_lines(self, state: PlantState) -> list[tuple[str, str]]:
|
||||
if not state.generators:
|
||||
return [("Status", "n/a")]
|
||||
lines: list[tuple[str, str]] = []
|
||||
control = "AUTO" if self.reactor.generator_auto else "MANUAL"
|
||||
lines.append(("Control", control))
|
||||
for idx, gen in enumerate(state.generators):
|
||||
status = "RUN" if gen.running else "START" if gen.starting else "OFF"
|
||||
spool = f" spool {gen.spool_remaining:4.1f}s" if gen.starting else ""
|
||||
lines.append((f"Gen{idx + 1}", f"{status} {gen.power_output_mw:6.1f}/{self.reactor.generators[idx].rated_output_mw:4.0f} MW{spool}"))
|
||||
lines.append((f" Battery", f"{gen.battery_charge*100:5.1f}% out {gen.battery_output_mw:4.1f} MW"))
|
||||
return lines
|
||||
|
||||
def _power_lines(self, state: PlantState) -> list[tuple[str, str]]:
|
||||
draws = getattr(state, "aux_draws", {}) or {}
|
||||
primary_nom = constants.PUMP_POWER_MW * len(self.reactor.primary_pump_units)
|
||||
secondary_nom = constants.PUMP_POWER_MW * len(self.reactor.secondary_pump_units)
|
||||
lines = [
|
||||
("Base Aux", f"{draws.get('base', 0.0):6.1f}/{constants.BASE_AUX_LOAD_MW:4.1f} MW"),
|
||||
("Primary Aux", f"{draws.get('primary_pumps', 0.0):6.1f}/{primary_nom:4.1f} MW"),
|
||||
("Secondary Aux", f"{draws.get('secondary_pumps', 0.0):6.1f}/{secondary_nom:4.1f} MW"),
|
||||
("Aux Demand", f"{draws.get('total_demand', 0.0):6.1f} MW"),
|
||||
("Aux Supplied", f"{draws.get('supplied', 0.0):6.1f} MW"),
|
||||
("Gen Output", f"{draws.get('generator_output', 0.0):6.1f} MW"),
|
||||
("Turbine Elec", f"{draws.get('turbine_output', 0.0):6.1f} MW"),
|
||||
]
|
||||
return lines
|
||||
|
||||
def _heat_exchanger_lines(self, state: PlantState) -> list[tuple[str, str]]:
|
||||
delta_t = getattr(state, "primary_to_secondary_delta_t", 0.0)
|
||||
eff = getattr(state, "heat_exchanger_efficiency", 0.0)
|
||||
hx_fouling = getattr(state, "hx_fouling", 0.0)
|
||||
return [
|
||||
("ΔT (pri-sec)", f"{delta_t:6.1f} K"),
|
||||
("HX Eff", f"{eff*100:6.1f}%"),
|
||||
("Chem/Foul", f"O2 {getattr(state, 'dissolved_oxygen_ppm', 0.0):5.1f} ppm Na {getattr(state, 'sodium_ppm', 0.0):5.1f} ppm Foul {hx_fouling*100:5.1f}%"),
|
||||
]
|
||||
|
||||
def _protection_lines(self, state: PlantState) -> list[tuple[str, str]]:
|
||||
lines: list[tuple[str, str] | tuple[str, str, int]] = []
|
||||
lines.append(("SCRAM", "ACTIVE" if self.reactor.shutdown else "CLEAR", curses.color_pair(4) if self.reactor.shutdown else 0))
|
||||
if self.reactor.meltdown:
|
||||
lines.append(("Meltdown", "IN PROGRESS", curses.color_pair(4) | curses.A_BOLD))
|
||||
cooldown_status = "Normal"
|
||||
if state.core.power_output_mw <= constants.RHR_CUTOFF_POWER_MW and (self.reactor.primary_pump_active or self.reactor.secondary_pump_active):
|
||||
cooldown_status = "RHR/Passive"
|
||||
lines.append(("Cooldown", cooldown_status))
|
||||
sec_flow_low = state.secondary_loop.mass_flow_rate <= 1.0 or not self.reactor.secondary_pump_active
|
||||
heat_sink_risk = sec_flow_low and state.core.power_output_mw > 50.0
|
||||
if heat_sink_risk:
|
||||
heat_text = "TRIPPED low secondary flow >50 MW"
|
||||
heat_attr = curses.color_pair(4) | curses.A_BOLD
|
||||
elif sec_flow_low:
|
||||
heat_text = "ARMED (secondary off/low flow)"
|
||||
heat_attr = curses.color_pair(2) | curses.A_BOLD
|
||||
else:
|
||||
heat_text = "OK"
|
||||
heat_attr = curses.color_pair(3)
|
||||
lines.append(("Heat sink", heat_text, heat_attr))
|
||||
|
||||
draws = getattr(state, "aux_draws", {}) or {}
|
||||
demand = draws.get("total_demand", 0.0)
|
||||
supplied = draws.get("supplied", 0.0)
|
||||
if demand > 0.1 and supplied + 1e-6 < demand:
|
||||
aux_text = f"DEFICIT {supplied:5.1f}/{demand:5.1f} MW"
|
||||
aux_attr = curses.color_pair(2) | curses.A_BOLD
|
||||
elif demand > 0.1:
|
||||
aux_text = f"OK {supplied:5.1f}/{demand:5.1f} MW"
|
||||
aux_attr = curses.color_pair(3)
|
||||
else:
|
||||
aux_text = "Idle"
|
||||
aux_attr = 0
|
||||
lines.append(("Aux power", aux_text, aux_attr))
|
||||
|
||||
reliefs = []
|
||||
if self.reactor.primary_relief_open:
|
||||
reliefs.append("Primary")
|
||||
if self.reactor.secondary_relief_open:
|
||||
reliefs.append("Secondary")
|
||||
relief_attr = curses.color_pair(2) | curses.A_BOLD if reliefs else 0
|
||||
lines.append(("Relief valves", ", ".join(reliefs) if reliefs else "Closed", relief_attr))
|
||||
lines.append(("DNB margin", f"{state.core.dnb_margin:5.2f}" if state.core.dnb_margin is not None else "n/a"))
|
||||
lines.append(("Subcooling", f"{state.core.subcooling_margin:5.1f} K" if state.core.subcooling_margin is not None else "n/a"))
|
||||
lines.append(
|
||||
(
|
||||
"SG level",
|
||||
f"{state.secondary_loop.level*100:5.1f}%",
|
||||
)
|
||||
)
|
||||
lines.append(("SG pressure", f"{state.secondary_loop.pressure:5.2f}/{constants.MAX_PRESSURE:4.1f} MPa"))
|
||||
lines.append(
|
||||
(
|
||||
"SCRAM trips",
|
||||
"DNB<0.5 | Subcool<2K | SG lvl<5/>98% | SG P>15.2MPa",
|
||||
)
|
||||
)
|
||||
return lines
|
||||
|
||||
def _steam_available_power(self, state: PlantState) -> float:
|
||||
mass_flow = state.secondary_loop.mass_flow_rate * max(0.0, state.secondary_loop.steam_quality)
|
||||
if mass_flow <= 1.0:
|
||||
return 0.0
|
||||
if state.turbines:
|
||||
enthalpy_kjkg = max(0.0, state.turbines[0].steam_enthalpy)
|
||||
else:
|
||||
enthalpy_kjkg = (constants.STEAM_LATENT_HEAT / 1_000.0)
|
||||
return (enthalpy_kjkg * mass_flow) / 1_000.0
|
||||
|
||||
def _measured_power(self, state: PlantState) -> float:
|
||||
ctl = getattr(self, "reactor", None)
|
||||
if ctl and getattr(ctl, "control", None):
|
||||
filtered = getattr(ctl.control, "_filtered_power_mw", 0.0)
|
||||
if filtered > 0.0:
|
||||
return filtered
|
||||
return state.core.power_output_mw
|
||||
|
||||
def _desired_throttle(self, turbine_state) -> float:
|
||||
if not self.reactor.turbines:
|
||||
return 0.0
|
||||
turbine = self.reactor.turbines[0]
|
||||
demand = turbine_state.load_demand_mw
|
||||
return 0.4 if demand <= 0 else min(1.0, 0.4 + demand / max(1e-6, turbine.rated_output_mw))
|
||||
|
||||
def _update_trends(self, state: PlantState) -> None:
|
||||
self._trend_history.append((state.time_elapsed, state.core.fuel_temperature, state.core.power_output_mw))
|
||||
|
||||
def _trend_lines(self, state: PlantState) -> list[tuple[str, str]]:
|
||||
if len(self._trend_history) < 2:
|
||||
return [("Fuel Temp Δ", "n/a"), ("Core Power Δ", "n/a"), ("P(meas)", "n/a")]
|
||||
start_t, start_temp, start_power = self._trend_history[0]
|
||||
end_t, end_temp, end_power = self._trend_history[-1]
|
||||
duration = max(1.0, end_t - start_t)
|
||||
temp_delta = end_temp - start_temp
|
||||
power_delta = end_power - start_power
|
||||
temp_rate = temp_delta / duration
|
||||
power_rate = power_delta / duration
|
||||
measured = getattr(self.reactor.control, "_filtered_power_mw", 0.0) if hasattr(self.reactor, "control") else 0.0
|
||||
return [
|
||||
("Fuel Temp Δ", f"{end_temp:7.1f} K (Δ{temp_delta:+6.1f} / {duration:4.0f}s, {temp_rate:+5.2f}/s)"),
|
||||
("Core Power Δ", f"{end_power:7.1f} MW (Δ{power_delta:+6.1f} / {duration:4.0f}s, {power_rate:+5.2f}/s)"),
|
||||
("P(meas)", f"{measured:7.1f} MW" if measured > 0 else "n/a"),
|
||||
]
|
||||
|
||||
def _draw_health_bars(self, win: "curses._CursesWindow", start_y: int) -> int:
|
||||
height, width = win.getmaxyx()
|
||||
inner_width = width - 4
|
||||
if start_y >= height - 2:
|
||||
return
|
||||
return height - 2
|
||||
win.addstr(start_y, 2, "Component Health", curses.A_BOLD | curses.color_pair(1))
|
||||
bar_width = max(10, min(width - 28, 40))
|
||||
for idx, (name, comp) in enumerate(self.reactor.health_monitor.components.items(), start=1):
|
||||
filled = int(bar_width * comp.integrity)
|
||||
bar = "█" * filled + "-" * (bar_width - filled)
|
||||
color = 3 if comp.integrity > 0.5 else 2 if comp.integrity > 0.2 else 4
|
||||
row = start_y + idx
|
||||
bar_width = max(8, min(inner_width - 18, 40))
|
||||
label_width = 16
|
||||
row = start_y + 1
|
||||
for name, comp in self.reactor.health_monitor.components.items():
|
||||
if row >= height - 1:
|
||||
break
|
||||
label = f"{name:<12}:"
|
||||
win.addstr(row, 4, label[:14], curses.A_BOLD)
|
||||
bar_start = 4 + max(len(label), 14) + 1
|
||||
label = f"{name:<{label_width}}"
|
||||
target = 0.0 if comp.failed else comp.integrity
|
||||
filled = int(bar_width * max(0.0, min(1.0, target)))
|
||||
bar = "#" * filled + "-" * (bar_width - filled)
|
||||
color = 3 if comp.integrity > 0.5 else 2 if comp.integrity > 0.2 else 4
|
||||
win.addstr(row, 4, f"{label}:")
|
||||
bar_start = 4 + label_width + 1
|
||||
win.addstr(row, bar_start, bar[:bar_width], curses.color_pair(color))
|
||||
percent_col = min(width - 8, bar_start + bar_width + 2)
|
||||
win.addstr(row, percent_col, f"{comp.integrity*100:5.1f}%", curses.color_pair(color))
|
||||
percent_text = "FAILED" if comp.failed else f"{comp.integrity*100:5.1f}%"
|
||||
percent_x = min(width - len(percent_text) - 2, bar_start + bar_width + 2)
|
||||
win.addstr(row, percent_x, percent_text, curses.color_pair(color))
|
||||
row += 1
|
||||
return row + 1
|
||||
|
||||
def _pump_status(self, pumps: list, index: int) -> str:
|
||||
if index >= len(pumps):
|
||||
return "n/a"
|
||||
state = pumps[index]
|
||||
status = getattr(state, "status", "ON" if state.active else "OFF")
|
||||
return f"{status:<8} {state.flow_rate:6.0f} kg/s"
|
||||
|
||||
def _current_demand(self) -> float:
|
||||
if self.reactor.consumer:
|
||||
@@ -435,7 +890,9 @@ class ReactorDashboard:
|
||||
|
||||
def _clamped_rod(self, delta: float) -> float:
|
||||
new_fraction = self.reactor.control.rod_fraction + delta
|
||||
return max(0.0, min(0.95, new_fraction))
|
||||
step = constants.ROD_MANUAL_STEP
|
||||
quantized = round(new_fraction / step) * step
|
||||
return max(0.0, min(0.95, quantized))
|
||||
|
||||
def _install_log_capture(self) -> None:
|
||||
if self._log_handler:
|
||||
@@ -463,7 +920,22 @@ class _DashboardLogHandler(logging.Handler):
|
||||
def __init__(self, buffer: deque[str]) -> None:
|
||||
super().__init__()
|
||||
self.buffer = buffer
|
||||
self._last_msg: str | None = None
|
||||
self._repeat_count: int = 0
|
||||
|
||||
def emit(self, record: logging.LogRecord) -> None:
|
||||
msg = self.format(record)
|
||||
if msg == self._last_msg:
|
||||
self._repeat_count += 1
|
||||
if self.buffer and self.buffer[-1].startswith(self._last_msg):
|
||||
try:
|
||||
self.buffer[-1] = f"{self._last_msg} (x{self._repeat_count + 1})"
|
||||
except Exception:
|
||||
self.buffer.append(f"{msg} (x{self._repeat_count + 1})")
|
||||
else:
|
||||
self.buffer.append(f"{msg} (x{self._repeat_count + 1})")
|
||||
return
|
||||
else:
|
||||
self._last_msg = msg
|
||||
self._repeat_count = 0
|
||||
self.buffer.append(msg)
|
||||
|
||||
@@ -50,11 +50,16 @@ class ComponentHealth:
|
||||
class HealthMonitor:
|
||||
"""Tracks component wear and signals failures."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, disable_degradation: bool = False) -> None:
|
||||
self.disable_degradation = disable_degradation
|
||||
self.components: Dict[str, ComponentHealth] = {
|
||||
"core": ComponentHealth("core"),
|
||||
"primary_pump": ComponentHealth("primary_pump"),
|
||||
"secondary_pump": ComponentHealth("secondary_pump"),
|
||||
"primary_pump_1": ComponentHealth("primary_pump_1"),
|
||||
"primary_pump_2": ComponentHealth("primary_pump_2"),
|
||||
"secondary_pump_1": ComponentHealth("secondary_pump_1"),
|
||||
"secondary_pump_2": ComponentHealth("secondary_pump_2"),
|
||||
"generator_1": ComponentHealth("generator_1"),
|
||||
"generator_2": ComponentHealth("generator_2"),
|
||||
}
|
||||
for idx in range(3):
|
||||
name = f"turbine_{idx + 1}"
|
||||
@@ -67,32 +72,58 @@ class HealthMonitor:
|
||||
def evaluate(
|
||||
self,
|
||||
state: PlantState,
|
||||
primary_active: bool,
|
||||
secondary_active: bool,
|
||||
primary_units: Iterable[bool],
|
||||
secondary_units: Iterable[bool],
|
||||
turbine_active: Iterable[bool],
|
||||
generator_states: Iterable,
|
||||
dt: float,
|
||||
) -> List[str]:
|
||||
if self.disable_degradation:
|
||||
return []
|
||||
events: list[str] = []
|
||||
turbine_flags = list(turbine_active)
|
||||
core = self.component("core")
|
||||
core_temp = state.core.fuel_temperature
|
||||
temp_stress = max(0.0, (core_temp - 900.0) / (constants.MAX_CORE_TEMPERATURE - 900.0))
|
||||
temp_stress = max(0.0, (core_temp - 900.0) / max(1e-6, (constants.MAX_CORE_TEMPERATURE - 900.0)))
|
||||
base_degrade = 0.0001 * dt
|
||||
core.degrade(base_degrade + temp_stress * 0.01 * dt)
|
||||
|
||||
if primary_active:
|
||||
primary_flow = state.primary_loop.mass_flow_rate
|
||||
flow_ratio = 0.0 if primary_flow <= 0 else min(1.0, primary_flow / 18_000.0)
|
||||
self.component("primary_pump").degrade((0.0002 + (1 - flow_ratio) * 0.005) * dt)
|
||||
prim_units = list(primary_units)
|
||||
sec_units = list(secondary_units)
|
||||
prim_states = state.primary_pumps or []
|
||||
sec_states = state.secondary_pumps or []
|
||||
primary_temp = getattr(state.primary_loop, "temperature_out", 295.0)
|
||||
secondary_temp = getattr(state.secondary_loop, "temperature_out", 295.0)
|
||||
primary_heat_factor = max(0.0, (primary_temp - 600.0) / 400.0) # harsher wear only when very hot
|
||||
secondary_heat_factor = max(0.0, (secondary_temp - 520.0) / 300.0)
|
||||
for idx, active in enumerate(prim_units):
|
||||
comp = self.component(f"primary_pump_{idx + 1}")
|
||||
if idx < len(prim_states) and active:
|
||||
flow = prim_states[idx].flow_rate
|
||||
flow_ratio = 0.0 if flow <= 0 else min(1.0, flow / 9_000.0)
|
||||
low_flow_penalty = (1 - flow_ratio) * 0.001
|
||||
rate = (0.0001 + low_flow_penalty) * (1 + primary_heat_factor)
|
||||
comp.degrade(rate * dt)
|
||||
else:
|
||||
self.component("primary_pump").degrade(0.0005 * dt)
|
||||
comp.degrade(0.0)
|
||||
for idx, active in enumerate(sec_units):
|
||||
comp = self.component(f"secondary_pump_{idx + 1}")
|
||||
if idx < len(sec_states) and active:
|
||||
flow = sec_states[idx].flow_rate
|
||||
flow_ratio = 0.0 if flow <= 0 else min(1.0, flow / 8_000.0)
|
||||
low_flow_penalty = (1 - flow_ratio) * 0.0008
|
||||
rate = (0.0001 + low_flow_penalty) * (1 + secondary_heat_factor)
|
||||
comp.degrade(rate * dt)
|
||||
else:
|
||||
comp.degrade(0.0)
|
||||
|
||||
if secondary_active:
|
||||
secondary_flow = state.secondary_loop.mass_flow_rate
|
||||
flow_ratio = 0.0 if secondary_flow <= 0 else min(1.0, secondary_flow / 16_000.0)
|
||||
self.component("secondary_pump").degrade((0.0002 + (1 - flow_ratio) * 0.004) * dt)
|
||||
for idx, gen_state in enumerate(generator_states):
|
||||
comp = self.component(f"generator_{idx + 1}")
|
||||
running = getattr(gen_state, "running", False) or getattr(gen_state, "starting", False)
|
||||
if running:
|
||||
comp.degrade(0.00015 * dt)
|
||||
else:
|
||||
self.component("secondary_pump").degrade(0.0005 * dt)
|
||||
comp.degrade(0.0)
|
||||
|
||||
turbines = state.turbines if hasattr(state, "turbines") else []
|
||||
for idx, active in enumerate(turbine_flags):
|
||||
@@ -126,6 +157,11 @@ class HealthMonitor:
|
||||
mapped = "turbine_1" if name == "turbine" else name
|
||||
if mapped in self.components:
|
||||
self.components[mapped] = ComponentHealth.from_snapshot(comp_data)
|
||||
elif mapped == "primary_pump":
|
||||
self.components["primary_pump_1"] = ComponentHealth.from_snapshot(comp_data)
|
||||
self.components["primary_pump_2"] = ComponentHealth.from_snapshot(comp_data)
|
||||
elif mapped == "secondary_pump":
|
||||
self.components["secondary_pump_1"] = ComponentHealth.from_snapshot(comp_data)
|
||||
|
||||
def maintain(self, component: str, amount: float = 0.05) -> bool:
|
||||
comp = self.components.get(component)
|
||||
|
||||
81
src/reactor_sim/generator.py
Normal file
81
src/reactor_sim/generator.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""Auxiliary diesel generator model with spool dynamics."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
|
||||
from . import constants
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class GeneratorState:
|
||||
running: bool
|
||||
starting: bool
|
||||
spool_remaining: float
|
||||
power_output_mw: float
|
||||
battery_charge: float
|
||||
status: str = "OFF"
|
||||
battery_output_mw: float = 0.0
|
||||
|
||||
|
||||
@dataclass
|
||||
class DieselGenerator:
|
||||
rated_output_mw: float = 50.0
|
||||
spool_time: float = constants.GENERATOR_SPOOL_TIME
|
||||
|
||||
def start(self, state: GeneratorState) -> None:
|
||||
if state.running or state.starting:
|
||||
return
|
||||
if state.battery_charge <= 0.05:
|
||||
LOGGER.warning("Generator start failed: insufficient battery")
|
||||
return
|
||||
state.starting = True
|
||||
state.spool_remaining = self.spool_time
|
||||
state.status = "STARTING"
|
||||
LOGGER.info("Generator starting (spool %.0fs)", self.spool_time)
|
||||
|
||||
def stop(self, state: GeneratorState) -> None:
|
||||
if not (state.running or state.starting):
|
||||
return
|
||||
state.running = False
|
||||
state.starting = False
|
||||
state.spool_remaining = 0.0
|
||||
state.power_output_mw = 0.0
|
||||
state.status = "OFF"
|
||||
LOGGER.info("Generator stopped")
|
||||
|
||||
def step(self, state: GeneratorState, load_demand_mw: float, dt: float) -> float:
|
||||
"""Advance generator dynamics and return delivered power."""
|
||||
state.battery_output_mw = 0.0
|
||||
if state.starting:
|
||||
state.spool_remaining = max(0.0, state.spool_remaining - dt)
|
||||
progress = 1.0 - state.spool_remaining / max(self.spool_time, 1e-6)
|
||||
available = self.rated_output_mw * progress
|
||||
delivered = min(available, max(0.0, load_demand_mw))
|
||||
state.power_output_mw = delivered
|
||||
state.battery_output_mw = min(0.5, delivered) if delivered > 0 else 0.0
|
||||
if state.spool_remaining <= 0.0:
|
||||
state.starting = False
|
||||
state.running = True
|
||||
state.status = "RUN"
|
||||
LOGGER.info("Generator online at %.1f MW", self.rated_output_mw)
|
||||
elif state.running:
|
||||
available = self.rated_output_mw
|
||||
delivered = min(available, max(0.0, load_demand_mw))
|
||||
state.power_output_mw = delivered
|
||||
state.status = "RUN" if state.power_output_mw > 0 else "IDLE"
|
||||
else:
|
||||
state.power_output_mw = 0.0
|
||||
state.status = "OFF"
|
||||
|
||||
if state.running:
|
||||
state.battery_charge = min(1.0, state.battery_charge + 0.02 * dt)
|
||||
elif state.starting:
|
||||
state.battery_charge = max(0.0, state.battery_charge - 0.003 * dt)
|
||||
else:
|
||||
state.battery_charge = max(0.0, state.battery_charge - 0.00005 * dt)
|
||||
|
||||
return state.power_output_mw
|
||||
@@ -7,7 +7,7 @@ import logging
|
||||
|
||||
from . import constants
|
||||
from .fuel import fuel_reactivity_penalty
|
||||
from .state import CoreState
|
||||
from .state import CoreState, clamp
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
@@ -15,7 +15,7 @@ LOGGER = logging.getLogger(__name__)
|
||||
def temperature_feedback(temp: float) -> float:
|
||||
"""Negative coefficient: higher temperature lowers reactivity."""
|
||||
reference = 900.0
|
||||
coefficient = -1.5e-5
|
||||
coefficient = -1.7e-5
|
||||
return coefficient * (temp - reference)
|
||||
|
||||
|
||||
@@ -25,33 +25,135 @@ def xenon_poisoning(flux: float) -> float:
|
||||
|
||||
@dataclass
|
||||
class NeutronDynamics:
|
||||
base_shutdown_bias: float = -0.014
|
||||
shutdown_bias: float = -0.014
|
||||
beta_effective: float = 0.0065
|
||||
delayed_neutron_fraction: float = 0.0008
|
||||
delayed_decay_const: float = 0.08 # 1/s effective precursor decay
|
||||
external_source_coupling: float = 1e-6
|
||||
iodine_yield: float = 1e-6 # inventory units per MW*s
|
||||
iodine_decay_const: float = 1.0 / 66000.0 # ~18h
|
||||
xenon_decay_const: float = 1.0 / 33000.0 # ~9h
|
||||
xenon_burnout_coeff: float = 1e-13 # per n/cm2
|
||||
xenon_reactivity_coeff: float = 0.05
|
||||
|
||||
def reactivity(self, state: CoreState, control_fraction: float) -> float:
|
||||
def reactivity(self, state: CoreState, control_fraction: float, rod_banks: list[float] | None = None) -> float:
|
||||
if rod_banks:
|
||||
weights = constants.CONTROL_ROD_BANK_WEIGHTS
|
||||
worth = 0.0
|
||||
total = sum(weights)
|
||||
for w, pos in zip(weights, rod_banks):
|
||||
worth += w * (1.0 - clamp(pos, 0.0, 0.95) / 0.95)
|
||||
rod_term = constants.CONTROL_ROD_WORTH * worth / total
|
||||
else:
|
||||
rod_term = constants.CONTROL_ROD_WORTH * (1.0 - control_fraction)
|
||||
rho = (
|
||||
0.02 * (1.0 - control_fraction)
|
||||
self.shutdown_bias +
|
||||
rod_term
|
||||
+ temperature_feedback(state.fuel_temperature)
|
||||
- fuel_reactivity_penalty(state.burnup)
|
||||
- xenon_poisoning(state.neutron_flux)
|
||||
- self.xenon_penalty(state)
|
||||
)
|
||||
return rho
|
||||
|
||||
def flux_derivative(self, state: CoreState, rho: float, external_source_rate: float = 0.0) -> float:
|
||||
def flux_derivative(
|
||||
self,
|
||||
state: CoreState,
|
||||
rho: float,
|
||||
delayed_source: float,
|
||||
external_source_rate: float = 0.0,
|
||||
baseline_source: float = 1e5,
|
||||
) -> float:
|
||||
generation_time = constants.NEUTRON_LIFETIME
|
||||
beta = self.beta_effective
|
||||
source_term = self.external_source_coupling * external_source_rate
|
||||
return ((rho - beta) / generation_time) * state.neutron_flux + 1e5 + source_term
|
||||
prompt = ((rho - beta) / generation_time) * state.neutron_flux
|
||||
return prompt + delayed_source + baseline_source + source_term
|
||||
|
||||
def step(self, state: CoreState, control_fraction: float, dt: float, external_source_rate: float = 0.0) -> None:
|
||||
rho = self.reactivity(state, control_fraction)
|
||||
d_flux = self.flux_derivative(state, rho, external_source_rate)
|
||||
def step(
|
||||
self,
|
||||
state: CoreState,
|
||||
control_fraction: float,
|
||||
dt: float,
|
||||
external_source_rate: float = 0.0,
|
||||
rod_banks: list[float] | None = None,
|
||||
) -> None:
|
||||
rho = self.reactivity(state, control_fraction, rod_banks)
|
||||
rho = min(rho, 0.02)
|
||||
shutdown = control_fraction >= 0.95
|
||||
if shutdown:
|
||||
rho = min(rho, -0.04)
|
||||
baseline = 0.0 if shutdown else 1e5
|
||||
source = 0.0 if shutdown else external_source_rate
|
||||
rod_positions = rod_banks if rod_banks else [control_fraction] * len(constants.CONTROL_ROD_BANK_WEIGHTS)
|
||||
self._ensure_precursors(state, len(rod_positions))
|
||||
bank_factors = self._bank_factors(rod_positions)
|
||||
bank_betas = self._bank_betas(len(bank_factors))
|
||||
delayed_source = self._delayed_source(state, bank_factors)
|
||||
|
||||
d_flux = self.flux_derivative(
|
||||
state,
|
||||
rho,
|
||||
delayed_source,
|
||||
external_source_rate=source,
|
||||
baseline_source=baseline,
|
||||
)
|
||||
state.neutron_flux = max(0.0, state.neutron_flux + d_flux * dt)
|
||||
state.reactivity_margin = rho
|
||||
self._update_precursors(state, bank_factors, bank_betas, dt)
|
||||
LOGGER.debug(
|
||||
"Neutronics: rho=%.5f, flux=%.2e n/cm2/s, d_flux=%.2e",
|
||||
rho,
|
||||
state.neutron_flux,
|
||||
d_flux,
|
||||
)
|
||||
|
||||
def update_poisons(self, state: CoreState, dt: float) -> None:
|
||||
prod_I = max(0.0, state.power_output_mw) * self.iodine_yield
|
||||
decay_I = state.iodine_inventory * self.iodine_decay_const
|
||||
state.iodine_inventory = max(0.0, state.iodine_inventory + (prod_I - decay_I) * dt)
|
||||
prod_Xe = decay_I
|
||||
burn_Xe = state.neutron_flux * self.xenon_burnout_coeff
|
||||
decay_Xe = state.xenon_inventory * self.xenon_decay_const
|
||||
state.xenon_inventory = max(0.0, state.xenon_inventory + (prod_Xe - decay_Xe - burn_Xe) * dt)
|
||||
|
||||
def xenon_penalty(self, state: CoreState) -> float:
|
||||
"""Return delta-rho penalty from xenon inventory (positive magnitude)."""
|
||||
return self._xenon_penalty(state)
|
||||
|
||||
def _xenon_penalty(self, state: CoreState) -> float:
|
||||
return min(0.05, state.xenon_inventory * self.xenon_reactivity_coeff)
|
||||
|
||||
def _bank_betas(self, bank_count: int) -> list[float]:
|
||||
weights = list(constants.CONTROL_ROD_BANK_WEIGHTS)
|
||||
if bank_count != len(weights):
|
||||
weights = [1.0 for _ in range(bank_count)]
|
||||
total = sum(weights) if weights else 1.0
|
||||
return [self.beta_effective * (w / total) for w in weights]
|
||||
|
||||
def _bank_factors(self, positions: list[float]) -> list[float]:
|
||||
factors: list[float] = []
|
||||
for pos in positions:
|
||||
insertion = clamp(pos, 0.0, 0.95)
|
||||
factors.append(max(0.0, 1.0 - insertion / 0.95))
|
||||
return factors
|
||||
|
||||
def _ensure_precursors(self, state: CoreState, bank_count: int) -> None:
|
||||
if not state.delayed_precursors or len(state.delayed_precursors) != bank_count:
|
||||
state.delayed_precursors = [0.0 for _ in range(bank_count)]
|
||||
|
||||
def _delayed_source(self, state: CoreState, bank_factors: list[float]) -> float:
|
||||
decay = self.delayed_decay_const
|
||||
return sum(decay * precursor * factor for precursor, factor in zip(state.delayed_precursors, bank_factors))
|
||||
|
||||
def _update_precursors(
|
||||
self, state: CoreState, bank_factors: list[float], bank_betas: list[float], dt: float
|
||||
) -> None:
|
||||
generation_time = constants.NEUTRON_LIFETIME
|
||||
decay = self.delayed_decay_const
|
||||
new_pools: list[float] = []
|
||||
for precursor, factor, beta in zip(state.delayed_precursors, bank_factors, bank_betas):
|
||||
production = (beta / generation_time) * state.neutron_flux * factor
|
||||
loss = decay * precursor
|
||||
updated = max(0.0, precursor + (production - loss) * dt)
|
||||
new_pools.append(updated)
|
||||
state.delayed_precursors = new_pools
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
133
src/reactor_sim/rich_dashboard.py
Normal file
133
src/reactor_sim/rich_dashboard.py
Normal file
@@ -0,0 +1,133 @@
|
||||
"""Alternate dashboard using rich Live rendering (non-interactive)."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from rich.console import Group
|
||||
from rich.live import Live
|
||||
from rich.panel import Panel
|
||||
from rich.table import Table
|
||||
from rich.layout import Layout
|
||||
from rich.text import Text
|
||||
|
||||
from .reactor import Reactor
|
||||
from .simulation import ReactorSimulation
|
||||
from .state import PlantState
|
||||
from . import constants
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _table(title: str) -> Table:
|
||||
tbl = Table.grid(expand=True, padding=(0, 1))
|
||||
tbl.title = title
|
||||
tbl.title_style = "bold cyan"
|
||||
return tbl
|
||||
|
||||
|
||||
class RichDashboard:
|
||||
"""Read-only dashboard that refreshes plant metrics using rich."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reactor: Reactor,
|
||||
start_state: Optional[PlantState],
|
||||
timestep: float = 1.0,
|
||||
save_path: Optional[str] = None,
|
||||
) -> None:
|
||||
self.reactor = reactor
|
||||
self.start_state = start_state
|
||||
self.timestep = timestep
|
||||
self.save_path = save_path
|
||||
self.sim: Optional[ReactorSimulation] = None
|
||||
|
||||
def _render(self, state: PlantState) -> Layout:
|
||||
layout = Layout()
|
||||
layout.split_column(Layout(name="upper"), Layout(name="lower"))
|
||||
layout["upper"].split_row(Layout(name="core"), Layout(name="loops"))
|
||||
layout["lower"].split_row(Layout(name="turbine"), Layout(name="misc"))
|
||||
|
||||
core = _table("Core")
|
||||
core.add_row(f"Power {state.core.power_output_mw:6.1f} MW", f"Fuel {state.core.fuel_temperature:6.1f} K")
|
||||
core.add_row(f"Rods {self.reactor.control.rod_fraction:.3f}", f"Mode {'AUTO' if not self.reactor.control.manual_control else 'MAN'}")
|
||||
core.add_row(f"Setpoint {self.reactor.control.setpoint_mw:5.0f} MW", f"Reactivity {state.core.reactivity_margin:+.4f}")
|
||||
layout["upper"]["core"].update(Panel(core, padding=0))
|
||||
|
||||
loops = _table("Loops")
|
||||
loops.add_row(
|
||||
f"P pri {state.primary_loop.pressure:4.1f}/{constants.MAX_PRESSURE:4.1f} MPa",
|
||||
f"Tin {state.primary_loop.temperature_in:5.1f}K",
|
||||
f"Tout {state.primary_loop.temperature_out:5.1f}K",
|
||||
f"Flow {state.primary_loop.mass_flow_rate:6.0f} kg/s",
|
||||
)
|
||||
loops.add_row(
|
||||
f"P sec {state.secondary_loop.pressure:4.1f}/{constants.MAX_PRESSURE:4.1f} MPa",
|
||||
f"Tin {state.secondary_loop.temperature_in:5.1f}K",
|
||||
f"Tout {state.secondary_loop.temperature_out:5.1f}K",
|
||||
f"q {state.secondary_loop.steam_quality:4.2f}",
|
||||
)
|
||||
loops.add_row(
|
||||
f"HX ΔT {state.primary_to_secondary_delta_t:4.0f}K",
|
||||
f"Eff {state.heat_exchanger_efficiency*100:5.1f}%",
|
||||
f"Relief pri {'OPEN' if self.reactor.primary_relief_open else 'CLOSED'}",
|
||||
f"Relief sec {'OPEN' if self.reactor.secondary_relief_open else 'CLOSED'}",
|
||||
)
|
||||
layout["upper"]["loops"].update(Panel(loops, padding=0))
|
||||
|
||||
turbine = _table("Turbines / Grid")
|
||||
avail = getattr(self, "_steam_available_power", lambda s: 0.0)(state) # type: ignore[arg-type]
|
||||
steam_h = state.turbines[0].steam_enthalpy if state.turbines else 0.0
|
||||
turbine.add_row(
|
||||
f"Steam avail {avail:5.1f} MW",
|
||||
f"h {steam_h:5.0f} kJ/kg",
|
||||
f"Cond P {state.turbines[0].condenser_pressure:4.2f} MPa" if state.turbines else "Cond P n/a",
|
||||
)
|
||||
turbine.add_row(
|
||||
f"Unit1 {state.turbines[0].electrical_output_mw:5.1f} MW" if state.turbines else "Unit1 n/a",
|
||||
f"Unit2 {state.turbines[1].electrical_output_mw:5.1f} MW" if len(state.turbines) > 1 else "Unit2 n/a",
|
||||
f"Unit3 {state.turbines[2].electrical_output_mw:5.1f} MW" if len(state.turbines) > 2 else "Unit3 n/a",
|
||||
)
|
||||
turbine.add_row(
|
||||
f"Electrical {state.total_electrical_output():5.1f} MW",
|
||||
f"Demand {self._total_load_demand(state):5.1f} MW",
|
||||
f"Supplied {self._total_load_supplied(state):5.1f} MW",
|
||||
)
|
||||
layout["lower"]["turbine"].update(Panel(turbine, padding=0))
|
||||
|
||||
misc_group = []
|
||||
misc_group.append(Text(f"Time {state.time_elapsed:6.1f}s", style="cyan"))
|
||||
misc_group.append(Text(f"Primary pumps: {[p.status for p in state.primary_pumps] if state.primary_pumps else []}"))
|
||||
misc_group.append(Text(f"Secondary pumps: {[p.status for p in state.secondary_pumps] if state.secondary_pumps else []}"))
|
||||
misc_group.append(Text(f"Pressurizer level {self.reactor.pressurizer_level*100:5.1f}% @ {constants.PRIMARY_PRESSURIZER_SETPOINT_MPA:4.1f} MPa"))
|
||||
misc_group.append(Text(f"Reliefs: pri={'OPEN' if self.reactor.primary_relief_open else 'CLOSED'} sec={'OPEN' if self.reactor.secondary_relief_open else 'CLOSED'}"))
|
||||
if self.reactor.health_monitor.failure_log:
|
||||
misc_group.append(Text(f"Failures: {', '.join(self.reactor.health_monitor.failure_log)}", style="bold red"))
|
||||
layout["lower"]["misc"].update(Panel(Group(*misc_group), padding=0))
|
||||
return layout
|
||||
|
||||
def _total_load_supplied(self, state: PlantState) -> float:
|
||||
return sum(t.load_supplied_mw for t in state.turbines)
|
||||
|
||||
def _total_load_demand(self, state: PlantState) -> float:
|
||||
return sum(t.load_demand_mw for t in state.turbines)
|
||||
|
||||
def run(self) -> None:
|
||||
self.sim = ReactorSimulation(
|
||||
self.reactor,
|
||||
timestep=self.timestep,
|
||||
duration=None,
|
||||
realtime=True,
|
||||
)
|
||||
self.sim.start_state = self.start_state
|
||||
try:
|
||||
with Live(console=None, refresh_per_second=4) as live:
|
||||
for state in self.sim.run():
|
||||
live.update(self._render(state))
|
||||
except KeyboardInterrupt:
|
||||
if self.sim:
|
||||
self.sim.stop()
|
||||
finally:
|
||||
if self.save_path and self.sim and self.sim.last_state:
|
||||
self.reactor.save_state(self.save_path, self.sim.last_state)
|
||||
@@ -95,6 +95,10 @@ def main() -> None:
|
||||
log_file = os.getenv("FISSION_LOG_FILE")
|
||||
configure_logging(log_level, log_file)
|
||||
realtime = os.getenv("FISSION_REALTIME", "0") == "1"
|
||||
alternate_dashboard = os.getenv("ALTERNATE_DASHBOARD", "0") == "1"
|
||||
snapshot_at_env = os.getenv("FISSION_SNAPSHOT_AT")
|
||||
snapshot_at = float(snapshot_at_env) if snapshot_at_env else None
|
||||
snapshot_path = os.getenv("FISSION_SNAPSHOT_PATH", "artifacts/snapshot.txt")
|
||||
duration_env = os.getenv("FISSION_SIM_DURATION")
|
||||
if duration_env:
|
||||
duration = None if duration_env.lower() in {"none", "infinite"} else float(duration_env)
|
||||
@@ -116,7 +120,21 @@ def main() -> None:
|
||||
save_path = os.getenv("FISSION_SAVE_STATE") or str(state_path)
|
||||
if load_path:
|
||||
sim.start_state = reactor.load_state(load_path)
|
||||
if dashboard_mode:
|
||||
if dashboard_mode and snapshot_at is None:
|
||||
if alternate_dashboard:
|
||||
try:
|
||||
from .textual_dashboard import run_textual_dashboard
|
||||
except ImportError as exc: # pragma: no cover - optional dependency
|
||||
LOGGER.error("Textual dashboard requested but dependency missing: %s", exc)
|
||||
return
|
||||
run_textual_dashboard(
|
||||
reactor,
|
||||
start_state=sim.start_state,
|
||||
timestep=sim.timestep,
|
||||
save_path=save_path,
|
||||
)
|
||||
return
|
||||
else:
|
||||
from .dashboard import ReactorDashboard
|
||||
|
||||
dashboard = ReactorDashboard(
|
||||
@@ -128,7 +146,17 @@ def main() -> None:
|
||||
dashboard.run()
|
||||
return
|
||||
try:
|
||||
if realtime:
|
||||
if snapshot_at is not None:
|
||||
sim.duration = snapshot_at
|
||||
LOGGER.info("Running headless to t=%.1fs for snapshot...", snapshot_at)
|
||||
for _ in sim.run():
|
||||
pass
|
||||
if sim.last_state:
|
||||
from .snapshot import write_snapshot
|
||||
|
||||
write_snapshot(snapshot_path, reactor, sim.last_state)
|
||||
LOGGER.info("Snapshot written to %s", snapshot_path)
|
||||
elif realtime:
|
||||
LOGGER.info("Running in real-time mode (Ctrl+C to stop)...")
|
||||
for _ in sim.run():
|
||||
pass
|
||||
|
||||
53
src/reactor_sim/snapshot.py
Normal file
53
src/reactor_sim/snapshot.py
Normal file
@@ -0,0 +1,53 @@
|
||||
"""Snapshot formatting helpers shared across dashboards."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable
|
||||
|
||||
from . import constants
|
||||
from .reactor import Reactor
|
||||
from .state import PlantState
|
||||
|
||||
|
||||
def snapshot_lines(reactor: Reactor, state: PlantState) -> list[str]:
|
||||
core = state.core
|
||||
prim = state.primary_loop
|
||||
sec = state.secondary_loop
|
||||
t0 = state.turbines[0] if state.turbines else None
|
||||
lines: list[str] = [
|
||||
f"Time {state.time_elapsed:6.1f}s",
|
||||
f"Core: {core.power_output_mw:6.1f}MW fuel {core.fuel_temperature:6.1f}K rods {reactor.control.rod_fraction:.3f} ({'AUTO' if not reactor.control.manual_control else 'MAN'})",
|
||||
f"Primary: P={prim.pressure:4.1f}/{constants.MAX_PRESSURE:4.1f}MPa Tin={prim.temperature_in:6.1f}K Tout={prim.temperature_out:6.1f}K Flow={prim.mass_flow_rate:6.0f}kg/s",
|
||||
f"Secondary: P={sec.pressure:4.1f}/{constants.MAX_PRESSURE:4.1f}MPa Tin={sec.temperature_in:6.1f}K Tout={sec.temperature_out:6.1f}K q={sec.steam_quality:4.2f} Flow={sec.mass_flow_rate:6.0f}kg/s",
|
||||
f"HX ΔT={state.primary_to_secondary_delta_t:4.0f}K Eff={state.heat_exchanger_efficiency*100:5.1f}%",
|
||||
]
|
||||
if t0:
|
||||
lines.append(
|
||||
f"Turbines: h={t0.steam_enthalpy:5.0f}kJ/kg avail={_steam_available_power(state):5.1f}MW "
|
||||
f"CondP={t0.condenser_pressure:4.2f}/{constants.CONDENSER_MAX_PRESSURE_MPA:4.2f}MPa "
|
||||
f"CondT={t0.condenser_temperature:6.1f}K"
|
||||
)
|
||||
lines.append("Outputs: " + " ".join([f"T{idx+1}:{t.electrical_output_mw:5.1f}MW" for idx, t in enumerate(state.turbines)]))
|
||||
failures = ", ".join(reactor.health_monitor.failure_log) if reactor.health_monitor.failure_log else "None"
|
||||
lines.append(
|
||||
f"Status: pumps pri {[p.status for p in state.primary_pumps]} sec {[p.status for p in state.secondary_pumps]} "
|
||||
f"relief pri={'OPEN' if reactor.primary_relief_open else 'CLOSED'} sec={'OPEN' if reactor.secondary_relief_open else 'CLOSED'} "
|
||||
f"failures={failures}"
|
||||
)
|
||||
return lines
|
||||
|
||||
|
||||
def write_snapshot(path: Path | str, reactor: Reactor, state: PlantState) -> None:
|
||||
p = Path(path)
|
||||
p.parent.mkdir(parents=True, exist_ok=True)
|
||||
p.write_text("\n".join(snapshot_lines(reactor, state)))
|
||||
|
||||
|
||||
def _steam_available_power(state: PlantState) -> float:
|
||||
mass_flow = state.secondary_loop.mass_flow_rate * max(0.0, state.secondary_loop.steam_quality)
|
||||
if mass_flow <= 1.0:
|
||||
return 0.0
|
||||
enthalpy = state.turbines[0].steam_enthalpy if state.turbines else (constants.STEAM_LATENT_HEAT / 1_000.0)
|
||||
return (enthalpy * mass_flow) / 1_000.0
|
||||
|
||||
@@ -4,6 +4,10 @@ from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field, asdict
|
||||
|
||||
from . import constants
|
||||
|
||||
from .generator import GeneratorState
|
||||
|
||||
|
||||
def clamp(value: float, min_value: float, max_value: float) -> float:
|
||||
return max(min_value, min(max_value, value))
|
||||
@@ -16,9 +20,27 @@ class CoreState:
|
||||
reactivity_margin: float # delta rho
|
||||
power_output_mw: float # MW thermal
|
||||
burnup: float # fraction of fuel consumed
|
||||
clad_temperature: float | None = None # Kelvin
|
||||
pellet_center_temperature: float | None = None # Kelvin, peak centerline surrogate
|
||||
gap_conductance: float = 1.0 # surrogate factor 0-1
|
||||
dnb_margin: float | None = None # ratio to critical heat flux surrogate
|
||||
subcooling_margin: float | None = None # K until boiling
|
||||
xenon_inventory: float = 0.0
|
||||
iodine_inventory: float = 0.0
|
||||
delayed_precursors: list[float] = field(default_factory=list)
|
||||
fission_product_inventory: dict[str, float] = field(default_factory=dict)
|
||||
emitted_particles: dict[str, float] = field(default_factory=dict)
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.clad_temperature is None:
|
||||
self.clad_temperature = self.fuel_temperature
|
||||
if self.pellet_center_temperature is None:
|
||||
self.pellet_center_temperature = self.fuel_temperature
|
||||
if self.dnb_margin is None:
|
||||
self.dnb_margin = 1.0
|
||||
if self.subcooling_margin is None:
|
||||
self.subcooling_margin = 0.0
|
||||
|
||||
def update_burnup(self, dt: float) -> None:
|
||||
produced_energy_mwh = self.power_output_mw * (dt / 3600.0)
|
||||
self.burnup = clamp(self.burnup + produced_energy_mwh * 1e-5, 0.0, 0.99)
|
||||
@@ -39,6 +61,9 @@ class CoolantLoopState:
|
||||
pressure: float # MPa
|
||||
mass_flow_rate: float # kg/s
|
||||
steam_quality: float # fraction of vapor
|
||||
inventory_kg: float = 0.0 # bulk mass of coolant
|
||||
level: float = 1.0 # fraction full relative to nominal volume
|
||||
energy_j: float = 0.0 # stored thermal/latent energy for the loop
|
||||
|
||||
def average_temperature(self) -> float:
|
||||
return 0.5 * (self.temperature_in + self.temperature_out)
|
||||
@@ -50,8 +75,19 @@ class TurbineState:
|
||||
shaft_power_mw: float
|
||||
electrical_output_mw: float
|
||||
condenser_temperature: float
|
||||
condenser_pressure: float = constants.CONDENSER_BASE_PRESSURE_MPA
|
||||
fouling_penalty: float = 0.0
|
||||
load_demand_mw: float = 0.0
|
||||
load_supplied_mw: float = 0.0
|
||||
status: str = "OFF"
|
||||
|
||||
|
||||
@dataclass
|
||||
class PumpState:
|
||||
active: bool
|
||||
flow_rate: float
|
||||
pressure: float
|
||||
status: str = "OFF"
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -60,6 +96,16 @@ class PlantState:
|
||||
primary_loop: CoolantLoopState
|
||||
secondary_loop: CoolantLoopState
|
||||
turbines: list[TurbineState]
|
||||
primary_pumps: list[PumpState] = field(default_factory=list)
|
||||
secondary_pumps: list[PumpState] = field(default_factory=list)
|
||||
generators: list[GeneratorState] = field(default_factory=list)
|
||||
aux_draws: dict[str, float] = field(default_factory=dict)
|
||||
heat_exchanger_efficiency: float = 0.0
|
||||
primary_to_secondary_delta_t: float = 0.0
|
||||
dissolved_oxygen_ppm: float = constants.CHEM_OXYGEN_DEFAULT_PPM
|
||||
boron_ppm: float = constants.CHEM_BORON_DEFAULT_PPM
|
||||
sodium_ppm: float = constants.CHEM_SODIUM_DEFAULT_PPM
|
||||
hx_fouling: float = 0.0
|
||||
time_elapsed: float = field(default=0.0)
|
||||
|
||||
def snapshot(self) -> dict[str, float]:
|
||||
@@ -73,6 +119,9 @@ class PlantState:
|
||||
"turbine_electric": self.total_electrical_output(),
|
||||
"products": self.core.fission_product_inventory,
|
||||
"particles": self.core.emitted_particles,
|
||||
"primary_pumps": [pump.active for pump in self.primary_pumps],
|
||||
"secondary_pumps": [pump.active for pump in self.secondary_pumps],
|
||||
"generators": [gen.running or gen.starting for gen in self.generators],
|
||||
}
|
||||
|
||||
def total_electrical_output(self) -> float:
|
||||
@@ -86,16 +135,54 @@ class PlantState:
|
||||
core_blob = dict(data["core"])
|
||||
inventory = core_blob.pop("fission_product_inventory", {})
|
||||
particles = core_blob.pop("emitted_particles", {})
|
||||
# Backwards/forwards compatibility for optional core fields.
|
||||
core_blob.pop("dnb_margin", None)
|
||||
core_blob.pop("subcooling_margin", None)
|
||||
core_blob.setdefault("clad_temperature", core_blob.get("fuel_temperature", 295.0))
|
||||
core_blob.setdefault("pellet_center_temperature", core_blob.get("fuel_temperature", 295.0))
|
||||
core_blob.setdefault("gap_conductance", 1.0)
|
||||
turbines_blob = data.get("turbines")
|
||||
if turbines_blob is None:
|
||||
# Compatibility with previous single-turbine snapshots.
|
||||
old_turbine = data.get("turbine")
|
||||
turbines_blob = [old_turbine] if old_turbine else []
|
||||
turbines = [TurbineState(**t) for t in turbines_blob]
|
||||
prim_pumps_blob = data.get("primary_pumps", [])
|
||||
sec_pumps_blob = data.get("secondary_pumps", [])
|
||||
generators_blob = data.get("generators", [])
|
||||
generators = [GeneratorState(**g) for g in generators_blob]
|
||||
aux_draws = data.get("aux_draws", {})
|
||||
hx_eff = data.get("heat_exchanger_efficiency", 0.0)
|
||||
delta_t = data.get("primary_to_secondary_delta_t", 0.0)
|
||||
dissolved_oxygen = data.get("dissolved_oxygen_ppm", constants.CHEM_OXYGEN_DEFAULT_PPM)
|
||||
boron_ppm = data.get("boron_ppm", constants.CHEM_BORON_DEFAULT_PPM)
|
||||
sodium_ppm = data.get("sodium_ppm", constants.CHEM_SODIUM_DEFAULT_PPM)
|
||||
hx_fouling = data.get("hx_fouling", 0.0)
|
||||
return cls(
|
||||
core=CoreState(**core_blob, fission_product_inventory=inventory, emitted_particles=particles),
|
||||
primary_loop=CoolantLoopState(**data["primary_loop"]),
|
||||
secondary_loop=CoolantLoopState(**data["secondary_loop"]),
|
||||
primary_loop=CoolantLoopState(**_with_energy(data["primary_loop"])),
|
||||
secondary_loop=CoolantLoopState(**_with_energy(data["secondary_loop"])),
|
||||
turbines=turbines,
|
||||
primary_pumps=[PumpState(**p) for p in prim_pumps_blob],
|
||||
secondary_pumps=[PumpState(**p) for p in sec_pumps_blob],
|
||||
generators=generators,
|
||||
aux_draws=aux_draws,
|
||||
heat_exchanger_efficiency=hx_eff,
|
||||
primary_to_secondary_delta_t=delta_t,
|
||||
dissolved_oxygen_ppm=dissolved_oxygen,
|
||||
boron_ppm=boron_ppm,
|
||||
sodium_ppm=sodium_ppm,
|
||||
hx_fouling=hx_fouling,
|
||||
time_elapsed=data.get("time_elapsed", 0.0),
|
||||
)
|
||||
|
||||
|
||||
def _with_energy(loop_blob: dict) -> dict:
|
||||
"""Backwards compatibility: derive energy if missing."""
|
||||
if "energy_j" in loop_blob:
|
||||
return loop_blob
|
||||
energy = 0.5 * (loop_blob.get("temperature_in", 295.0) + loop_blob.get("temperature_out", 295.0))
|
||||
energy *= loop_blob.get("inventory_kg", 0.0) * constants.COOLANT_HEAT_CAPACITY
|
||||
out = dict(loop_blob)
|
||||
out["energy_j"] = energy
|
||||
return out
|
||||
|
||||
603
src/reactor_sim/textual_dashboard.py
Normal file
603
src/reactor_sim/textual_dashboard.py
Normal file
@@ -0,0 +1,603 @@
|
||||
"""Interactive Textual-based dashboard mirroring the curses layout."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from collections import deque
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from textual.app import App, ComposeResult
|
||||
from textual.containers import Grid, Horizontal, HorizontalScroll, Vertical, VerticalScroll
|
||||
from textual.widgets import Button, Footer, Header, Static
|
||||
from textual.timer import Timer
|
||||
|
||||
from . import constants
|
||||
from .reactor import Reactor
|
||||
from .simulation import ReactorSimulation
|
||||
from .state import PlantState
|
||||
from .commands import ReactorCommand
|
||||
from .snapshot import snapshot_lines
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _bar(label: str, value: float, width: int = 24) -> str:
|
||||
filled = int(max(0.0, min(1.0, value)) * width)
|
||||
return f"{label:<14} [{'#'*filled}{'-'*(width-filled)}] {value*100:5.1f}%"
|
||||
|
||||
|
||||
class TextualDashboard(App):
|
||||
"""Textual dashboard with controls and sections similar to the curses view."""
|
||||
|
||||
CSS = """
|
||||
Screen { layout: vertical; }
|
||||
#controls { padding: 0 0; height: auto; }
|
||||
#controls .row { height: auto; }
|
||||
#controls Button { min-width: 8; padding: 0 1; }
|
||||
.columns { height: 1fr; }
|
||||
.col { width: 1fr; height: 1fr; }
|
||||
.panel { padding: 0 1; border: round $primary; }
|
||||
"""
|
||||
|
||||
BINDINGS = [
|
||||
("q", "quit", "Quit"),
|
||||
("space", "scram", "SCRAM"),
|
||||
("g", "toggle_primary_p1", "P1"),
|
||||
("h", "toggle_primary_p2", "P2"),
|
||||
("j", "toggle_secondary_p1", "S1"),
|
||||
("k", "toggle_secondary_p2", "S2"),
|
||||
("b", "toggle_generator1", "Gen1"),
|
||||
("v", "toggle_generator2", "Gen2"),
|
||||
("t", "toggle_turbine_bank", "Turbines"),
|
||||
("1", "toggle_turbine_unit('1')", "T1"),
|
||||
("2", "toggle_turbine_unit('2')", "T2"),
|
||||
("3", "toggle_turbine_unit('3')", "T3"),
|
||||
("+", "rods_insert", "+ rods"),
|
||||
("-", "rods_withdraw", "- rods"),
|
||||
("[", "demand_down", "Demand -"),
|
||||
("]", "demand_up", "Demand +"),
|
||||
("s", "setpoint_down", "SP -"),
|
||||
("d", "setpoint_up", "SP +"),
|
||||
("l", "toggle_primary_relief", "Relief pri"),
|
||||
(";", "toggle_secondary_relief", "Relief sec"),
|
||||
("c", "toggle_consumer", "Consumer"),
|
||||
("a", "toggle_auto_rods", "Auto rods"),
|
||||
("f12", "snapshot", "Snapshot"),
|
||||
# Maintenance is mouse-only here; keyboard remains in curses.
|
||||
]
|
||||
|
||||
timestep: float = 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reactor: Reactor,
|
||||
start_state: Optional[PlantState],
|
||||
timestep: float = 1.0,
|
||||
save_path: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.reactor = reactor
|
||||
self.state = start_state or self.reactor.initial_state()
|
||||
self.timestep = timestep
|
||||
self.save_path = save_path
|
||||
self._pending: deque[ReactorCommand] = deque()
|
||||
self._timer: Optional[Timer] = None
|
||||
self._trend_history: deque[tuple[float, float, float]] = deque(maxlen=120)
|
||||
self.log_buffer: deque[str] = deque(maxlen=8)
|
||||
self._log_handler: Optional[logging.Handler] = None
|
||||
self._previous_handlers: list[logging.Handler] = []
|
||||
snap_at_env = os.getenv("FISSION_SNAPSHOT_AT")
|
||||
self.snapshot_at = float(snap_at_env) if snap_at_env else None
|
||||
self.snapshot_done = False
|
||||
self.snapshot_path = Path(os.getenv("FISSION_SNAPSHOT_PATH", "artifacts/textual_snapshot.txt"))
|
||||
|
||||
# Panels
|
||||
self.core_panel = Static(classes="panel")
|
||||
self.trend_panel = Static(classes="panel")
|
||||
self.poison_panel = Static(classes="panel")
|
||||
self.primary_panel = Static(classes="panel")
|
||||
self.secondary_panel = Static(classes="panel")
|
||||
self.turbine_panel = Static(classes="panel")
|
||||
self.generator_panel = Static(classes="panel")
|
||||
self.power_panel = Static(classes="panel")
|
||||
self.hx_panel = Static(classes="panel")
|
||||
self.protection_panel = Static(classes="panel")
|
||||
self.maintenance_panel = Static(classes="panel")
|
||||
self.health_panel = Static(classes="panel")
|
||||
self.help_panel = Static(classes="panel")
|
||||
self.log_panel = Static(classes="panel")
|
||||
self.status_panel = Static(classes="panel")
|
||||
self.controls_panel: Grid | None = None
|
||||
|
||||
def compose(self) -> ComposeResult:
|
||||
yield Header()
|
||||
controls = self._build_controls()
|
||||
yield controls
|
||||
with Horizontal(classes="columns"):
|
||||
with VerticalScroll(classes="col"):
|
||||
yield self.core_panel
|
||||
yield self.trend_panel
|
||||
yield self.poison_panel
|
||||
yield self.primary_panel
|
||||
yield self.secondary_panel
|
||||
yield self.power_panel
|
||||
yield self.generator_panel
|
||||
yield self.status_panel
|
||||
with VerticalScroll(classes="col"):
|
||||
yield self.turbine_panel
|
||||
yield self.hx_panel
|
||||
yield self.protection_panel
|
||||
yield self.maintenance_panel
|
||||
yield self.health_panel
|
||||
yield self.log_panel
|
||||
yield self.help_panel
|
||||
yield Footer()
|
||||
|
||||
def on_mount(self) -> None:
|
||||
self._install_log_capture()
|
||||
self._timer = self.set_interval(self.timestep, self._tick, pause=False)
|
||||
self._render_panels()
|
||||
|
||||
def action_quit(self) -> None:
|
||||
if self._timer:
|
||||
self._timer.pause()
|
||||
if self.save_path and self.state:
|
||||
self.reactor.save_state(self.save_path, self.state)
|
||||
self._restore_logging()
|
||||
self.exit()
|
||||
|
||||
# Command helpers
|
||||
def _enqueue(self, cmd: ReactorCommand) -> None:
|
||||
self._pending.append(cmd)
|
||||
|
||||
def action_scram(self) -> None:
|
||||
self._enqueue(ReactorCommand.scram_all())
|
||||
|
||||
def action_toggle_primary_p1(self) -> None:
|
||||
self._enqueue(ReactorCommand(primary_pumps={1: not self.reactor.primary_pump_units[0]}))
|
||||
|
||||
def action_toggle_primary_p2(self) -> None:
|
||||
self._enqueue(ReactorCommand(primary_pumps={2: not self.reactor.primary_pump_units[1]}))
|
||||
|
||||
def action_toggle_secondary_p1(self) -> None:
|
||||
self._enqueue(ReactorCommand(secondary_pumps={1: not self.reactor.secondary_pump_units[0]}))
|
||||
|
||||
def action_toggle_secondary_p2(self) -> None:
|
||||
self._enqueue(ReactorCommand(secondary_pumps={2: not self.reactor.secondary_pump_units[1]}))
|
||||
|
||||
def action_toggle_generator1(self) -> None:
|
||||
self._enqueue(ReactorCommand(generator_units={1: True}))
|
||||
|
||||
def action_toggle_generator2(self) -> None:
|
||||
self._enqueue(ReactorCommand(generator_units={2: True}))
|
||||
|
||||
def action_toggle_turbine_bank(self) -> None:
|
||||
self._enqueue(ReactorCommand(turbine_on=not self.reactor.turbine_active))
|
||||
|
||||
def action_toggle_turbine_unit(self, unit: str) -> None:
|
||||
idx = int(unit)
|
||||
current = self.reactor.turbine_unit_active[idx - 1] if idx - 1 < len(self.reactor.turbine_unit_active) else False
|
||||
self._enqueue(ReactorCommand(turbine_units={idx: not current}))
|
||||
|
||||
def action_rods_insert(self) -> None:
|
||||
self._enqueue(ReactorCommand(rod_position=min(0.95, self.reactor.control.rod_fraction + constants.ROD_MANUAL_STEP)))
|
||||
|
||||
def action_rods_withdraw(self) -> None:
|
||||
self._enqueue(ReactorCommand(rod_position=max(0.0, self.reactor.control.rod_fraction - constants.ROD_MANUAL_STEP)))
|
||||
|
||||
def action_demand_down(self) -> None:
|
||||
if self.reactor.consumer:
|
||||
self._enqueue(ReactorCommand(consumer_demand=max(0.0, self.reactor.consumer.demand_mw - 50.0)))
|
||||
|
||||
def action_demand_up(self) -> None:
|
||||
if self.reactor.consumer:
|
||||
self._enqueue(ReactorCommand(consumer_demand=self.reactor.consumer.demand_mw + 50.0))
|
||||
|
||||
def action_setpoint_down(self) -> None:
|
||||
self._enqueue(ReactorCommand(power_setpoint=self.reactor.control.setpoint_mw - 250.0))
|
||||
|
||||
def action_setpoint_up(self) -> None:
|
||||
self._enqueue(ReactorCommand(power_setpoint=self.reactor.control.setpoint_mw + 250.0))
|
||||
|
||||
def action_toggle_primary_relief(self) -> None:
|
||||
self._enqueue(ReactorCommand(primary_relief=not self.reactor.primary_relief_open))
|
||||
|
||||
def action_toggle_secondary_relief(self) -> None:
|
||||
self._enqueue(ReactorCommand(secondary_relief=not self.reactor.secondary_relief_open))
|
||||
|
||||
def action_toggle_consumer(self) -> None:
|
||||
if self.reactor.consumer:
|
||||
self._enqueue(ReactorCommand(consumer_online=not self.reactor.consumer.online))
|
||||
|
||||
def action_toggle_auto_rods(self) -> None:
|
||||
self._enqueue(ReactorCommand(rod_manual=not self.reactor.control.manual_control))
|
||||
|
||||
# Maintenance (mouse-driven)
|
||||
def action_maintain_core(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("core"))
|
||||
|
||||
def action_maintain_primary_p1(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("primary_pump_1"))
|
||||
|
||||
def action_maintain_primary_p2(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("primary_pump_2"))
|
||||
|
||||
def action_maintain_secondary_p1(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("secondary_pump_1"))
|
||||
|
||||
def action_maintain_secondary_p2(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("secondary_pump_2"))
|
||||
|
||||
def action_maintain_turbine_1(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("turbine_1"))
|
||||
|
||||
def action_maintain_turbine_2(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("turbine_2"))
|
||||
|
||||
def action_maintain_turbine_3(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("turbine_3"))
|
||||
|
||||
def action_maintain_generator_1(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("generator_1"))
|
||||
|
||||
def action_maintain_generator_2(self) -> None:
|
||||
self._enqueue(ReactorCommand.maintain("generator_2"))
|
||||
|
||||
def action_snapshot(self) -> None:
|
||||
self._save_snapshot(auto=False)
|
||||
|
||||
def _merge_commands(self) -> Optional[ReactorCommand]:
|
||||
if not self._pending:
|
||||
return None
|
||||
cmd = ReactorCommand()
|
||||
while self._pending:
|
||||
nxt = self._pending.popleft()
|
||||
for field in nxt.__dataclass_fields__: # type: ignore[attr-defined]
|
||||
val = getattr(nxt, field)
|
||||
if val is None or val is False:
|
||||
continue
|
||||
setattr(cmd, field, val)
|
||||
return cmd
|
||||
|
||||
def _tick(self) -> None:
|
||||
cmd = self._merge_commands()
|
||||
self.reactor.step(self.state, self.timestep, cmd)
|
||||
self._render_panels()
|
||||
if self.snapshot_at is not None and not self.snapshot_done and self.state.time_elapsed >= self.snapshot_at:
|
||||
self._save_snapshot(auto=True)
|
||||
|
||||
def _build_controls(self) -> Vertical:
|
||||
row1 = Horizontal(
|
||||
Button("SCRAM", id="scram"),
|
||||
Button("P1", id="p1"),
|
||||
Button("P2", id="p2"),
|
||||
Button("S1", id="s1"),
|
||||
Button("S2", id="s2"),
|
||||
Button("RelP", id="relief_pri"),
|
||||
Button("RelS", id="relief_sec"),
|
||||
Button("Turb", id="turbines"),
|
||||
Button("T1", id="t1"),
|
||||
Button("T2", id="t2"),
|
||||
Button("T3", id="t3"),
|
||||
Button("G1", id="g1"),
|
||||
Button("G2", id="g2"),
|
||||
Button("Grid", id="consumer"),
|
||||
Button("AutoR", id="auto_rods"),
|
||||
Button("+Rod", id="rods_plus"),
|
||||
Button("-Rod", id="rods_minus"),
|
||||
classes="row",
|
||||
)
|
||||
row2 = Horizontal(
|
||||
Button("D+50", id="demand_up"),
|
||||
Button("D-50", id="demand_down"),
|
||||
Button("SP+250", id="sp_up"),
|
||||
Button("SP-250", id="sp_down"),
|
||||
Button("Snap", id="snapshot"),
|
||||
classes="row",
|
||||
)
|
||||
row3 = Horizontal(
|
||||
Button("MCore", id="m_core"),
|
||||
Button("MP1", id="m_p1"),
|
||||
Button("MP2", id="m_p2"),
|
||||
Button("MS1", id="m_s1"),
|
||||
Button("MS2", id="m_s2"),
|
||||
Button("MT1", id="m_t1"),
|
||||
Button("MT2", id="m_t2"),
|
||||
Button("MT3", id="m_t3"),
|
||||
Button("MG1", id="m_g1"),
|
||||
Button("MG2", id="m_g2"),
|
||||
classes="row",
|
||||
)
|
||||
return Vertical(
|
||||
HorizontalScroll(row1, classes="row"),
|
||||
HorizontalScroll(row2, classes="row"),
|
||||
HorizontalScroll(row3, classes="row"),
|
||||
id="controls",
|
||||
)
|
||||
|
||||
def _render_panels(self) -> None:
|
||||
self._trend_history.append((self.state.time_elapsed, self.state.core.fuel_temperature, self.state.core.power_output_mw))
|
||||
|
||||
self.core_panel.update(
|
||||
"[bold cyan]Core[/bold cyan]\n"
|
||||
f"Power {self.state.core.power_output_mw:6.1f} MW (Nom {constants.NORMAL_CORE_POWER_MW:4.0f}/Max {constants.TEST_MAX_POWER_MW:4.0f})\n"
|
||||
f"Fuel {self.state.core.fuel_temperature:6.1f} K Rods {self.reactor.control.rod_fraction:.3f} ({'AUTO' if not self.reactor.control.manual_control else 'MAN'})\n"
|
||||
f"Setpoint {self.reactor.control.setpoint_mw:5.0f} MW Reactivity {self.state.core.reactivity_margin:+.4f}\n"
|
||||
f"DNB {self.state.core.dnb_margin:4.2f} Subcool {self.state.core.subcooling_margin:4.1f}K"
|
||||
)
|
||||
self.trend_panel.update(self._trend_text())
|
||||
self.poison_panel.update(self._poison_text())
|
||||
self.primary_panel.update(
|
||||
"[bold cyan]Primary Loop[/bold cyan]\n"
|
||||
f"Flow {self.state.primary_loop.mass_flow_rate:7.0f}/{self.reactor.primary_pump.nominal_flow * len(self.reactor.primary_pump_units):.0f} kg/s\n"
|
||||
f"Level {self.state.primary_loop.level*100:6.1f}%\n"
|
||||
f"Tin {self.state.primary_loop.temperature_in:7.1f} K Tout {self.state.primary_loop.temperature_out:7.1f} K (Target {constants.PRIMARY_OUTLET_TARGET_K:4.0f})\n"
|
||||
f"P {self.state.primary_loop.pressure:5.2f}/{constants.MAX_PRESSURE:4.1f} MPa Pressurizer {self.reactor.pressurizer_level*100:6.1f}% @ {constants.PRIMARY_PRESSURIZER_SETPOINT_MPA:4.1f} MPa\n"
|
||||
f"Relief {'OPEN' if self.reactor.primary_relief_open else 'CLOSED'} Pumps {[p.status for p in self.state.primary_pumps]}"
|
||||
)
|
||||
self.secondary_panel.update(
|
||||
"[bold cyan]Secondary Loop[/bold cyan]\n"
|
||||
f"Flow {self.state.secondary_loop.mass_flow_rate:7.0f}/{self.reactor.secondary_pump.nominal_flow * len(self.reactor.secondary_pump_units):.0f} kg/s\n"
|
||||
f"Level {self.state.secondary_loop.level*100:6.1f}%\n"
|
||||
f"Tin {self.state.secondary_loop.temperature_in:7.1f} K Tout {self.state.secondary_loop.temperature_out:7.1f} K (Target {constants.SECONDARY_OUTLET_TARGET_K:4.0f})\n"
|
||||
f"P {self.state.secondary_loop.pressure:5.2f}/{constants.MAX_PRESSURE:4.1f} MPa q {self.state.secondary_loop.steam_quality:5.2f}/1.00\n"
|
||||
f"Relief {'OPEN' if self.reactor.secondary_relief_open else 'CLOSED'} Pumps {[p.status for p in self.state.secondary_pumps]}"
|
||||
)
|
||||
self.turbine_panel.update(self._turbine_text())
|
||||
self.generator_panel.update(self._generator_text())
|
||||
self.power_panel.update(self._power_text())
|
||||
self.hx_panel.update(
|
||||
"[bold cyan]Heat Exchanger[/bold cyan]\n"
|
||||
f"ΔT (pri-sec) {self.state.primary_to_secondary_delta_t:4.0f} K\n"
|
||||
f"Efficiency {self.state.heat_exchanger_efficiency*100:5.1f}%"
|
||||
)
|
||||
self.protection_panel.update(self._protection_text())
|
||||
self.maintenance_panel.update(self._maintenance_text())
|
||||
self.health_panel.update(self._health_text())
|
||||
self.log_panel.update(self._log_text())
|
||||
self.help_panel.update(self._help_text())
|
||||
failures = ", ".join(self.reactor.health_monitor.failure_log) if self.reactor.health_monitor.failure_log else "None"
|
||||
self.status_panel.update(
|
||||
"[bold cyan]Status[/bold cyan]\n"
|
||||
f"Time {self.state.time_elapsed:6.1f}s\n"
|
||||
f"Consumer {'ON' if (self.reactor.consumer and self.reactor.consumer.online) else 'OFF'} Demand {self.reactor.consumer.demand_mw if self.reactor.consumer else 0.0:5.1f} MW\n"
|
||||
f"Failures: {failures}"
|
||||
)
|
||||
|
||||
def _trend_text(self) -> str:
|
||||
if len(self._trend_history) < 2:
|
||||
return "[bold cyan]Trends[/bold cyan]\nFuel Temp Δ n/a\nCore Power Δ n/a"
|
||||
start_t, start_temp, start_power = self._trend_history[0]
|
||||
end_t, end_temp, end_power = self._trend_history[-1]
|
||||
duration = max(1.0, end_t - start_t)
|
||||
temp_delta = end_temp - start_temp
|
||||
power_delta = end_power - start_power
|
||||
temp_rate = temp_delta / duration
|
||||
power_rate = power_delta / duration
|
||||
return (
|
||||
"[bold cyan]Trends[/bold cyan]\n"
|
||||
f"Fuel Temp Δ {end_temp:7.1f} K (Δ{temp_delta:+6.1f} / {duration:4.0f}s, {temp_rate:+5.2f}/s)\n"
|
||||
f"Core Power Δ {end_power:7.1f} MW (Δ{power_delta:+6.1f} / {duration:4.0f}s, {power_rate:+5.2f}/s)"
|
||||
)
|
||||
|
||||
def _poison_text(self) -> str:
|
||||
inventory = self.state.core.fission_product_inventory or {}
|
||||
particles = self.state.core.emitted_particles or {}
|
||||
xe = getattr(self.state.core, "xenon_inventory", 0.0)
|
||||
sm = inventory.get("Sm", 0.0)
|
||||
iodine = inventory.get("I", 0.0)
|
||||
xe_drho = getattr(self.state.core, "reactivity_margin", 0.0)
|
||||
return (
|
||||
"[bold cyan]Key Poisons / Emitters[/bold cyan]\n"
|
||||
f"Xe (xenon): {xe:9.2e}\n"
|
||||
f"Sm (samarium): {sm:9.2e}\n"
|
||||
f"I (iodine): {iodine:9.2e}\n"
|
||||
f"Xe Δρ: {xe_drho:+.4f}\n"
|
||||
f"Neutrons (src): {particles.get('neutrons', 0.0):.2e}"
|
||||
)
|
||||
|
||||
def _turbine_text(self) -> str:
|
||||
steam_avail = self._steam_available_power(self.state)
|
||||
enthalpy = self.state.turbines[0].steam_enthalpy if self.state.turbines else 0.0
|
||||
cond = ""
|
||||
if self.state.turbines:
|
||||
cond = (
|
||||
f"Cond P {self.state.turbines[0].condenser_pressure:4.2f}/{constants.CONDENSER_MAX_PRESSURE_MPA:4.2f} MPa "
|
||||
f"T {self.state.turbines[0].condenser_temperature:6.1f}K"
|
||||
)
|
||||
lines = [
|
||||
"[bold cyan]Turbine / Grid[/bold cyan]",
|
||||
f"Turbines {' '.join(self._turbine_status_lines()) if self._turbine_status_lines() else 'n/a'}",
|
||||
f"Rated Elec {len(self.reactor.turbines)*self.reactor.turbines[0].rated_output_mw:7.1f} MW" if self.reactor.turbines else "Rated Elec n/a",
|
||||
f"Steam Avail {steam_avail:5.1f} MW h={enthalpy:5.0f} kJ/kg {cond}",
|
||||
]
|
||||
if self.state.turbines:
|
||||
lines.append("Unit Elec " + " ".join([f"{t.electrical_output_mw:6.1f}MW" for t in self.state.turbines]))
|
||||
lines.append(f"Throttle {self.reactor.turbines[0].throttle:5.2f}" if self.reactor.turbines else "Throttle n/a")
|
||||
lines.append(f"Electrical {self.state.total_electrical_output():7.1f} MW Load {self._total_load_supplied(self.state):7.1f}/{self._total_load_demand(self.state):7.1f} MW")
|
||||
if self.reactor.consumer:
|
||||
lines.append(f"Consumer {'ONLINE' if self.reactor.consumer.online else 'OFF'} Demand {self.reactor.consumer.demand_mw:7.1f} MW")
|
||||
return "\n".join(lines)
|
||||
|
||||
def _generator_text(self) -> str:
|
||||
lines = ["[bold cyan]Generators[/bold cyan]"]
|
||||
for idx, g in enumerate(self.state.generators):
|
||||
status = "RUN" if g.running else "OFF"
|
||||
if g.starting:
|
||||
status = "START"
|
||||
lines.append(f"Gen{idx+1}: {status:5} {g.power_output_mw:5.1f} MW batt {g.battery_charge*100:5.1f}%")
|
||||
return "\n".join(lines)
|
||||
|
||||
def _power_text(self) -> str:
|
||||
draws = getattr(self.state, "aux_draws", {}) or {}
|
||||
base = draws.get("base", 0.0)
|
||||
prim = draws.get("primary_pumps", 0.0)
|
||||
sec = draws.get("secondary_pumps", 0.0)
|
||||
demand = draws.get("total_demand", 0.0)
|
||||
supplied = draws.get("supplied", 0.0)
|
||||
gen_out = draws.get("generator_output", 0.0)
|
||||
turb_out = draws.get("turbine_output", 0.0)
|
||||
return (
|
||||
"[bold cyan]Power Stats[/bold cyan]\n"
|
||||
f"Base Aux {base:5.1f} MW Prim Aux {prim:5.1f} MW Sec Aux {sec:5.1f} MW\n"
|
||||
f"Aux demand {demand:5.1f} MW supplied {supplied:5.1f} MW\n"
|
||||
f"Gen out {gen_out:5.1f} MW Turbine out {turb_out:5.1f} MW"
|
||||
)
|
||||
|
||||
def _protection_text(self) -> str:
|
||||
lines = ["[bold cyan]Protections / Warnings[/bold cyan]"]
|
||||
lines.append(f"SCRAM {'ACTIVE' if self.reactor.shutdown else 'CLEAR'}")
|
||||
if self.reactor.meltdown:
|
||||
lines.append("Meltdown IN PROGRESS")
|
||||
sec_flow_low = self.state.secondary_loop.mass_flow_rate <= 1.0 or not self.reactor.secondary_pump_active
|
||||
heat_sink_risk = sec_flow_low and self.state.core.power_output_mw > 50.0
|
||||
if heat_sink_risk:
|
||||
heat_text = "TRIPPED low secondary flow >50 MW"
|
||||
elif sec_flow_low:
|
||||
heat_text = "ARMED (secondary off/low flow)"
|
||||
else:
|
||||
heat_text = "OK"
|
||||
lines.append(f"Heat sink {heat_text}")
|
||||
lines.append(f"DNB margin {self.state.core.dnb_margin:4.2f}")
|
||||
lines.append(f"Subcooling {self.state.core.subcooling_margin:5.1f} K")
|
||||
lines.append(f"Reliefs pri={'OPEN' if self.reactor.primary_relief_open else 'CLOSED'} sec={'OPEN' if self.reactor.secondary_relief_open else 'CLOSED'}")
|
||||
return "\n".join(lines)
|
||||
|
||||
def _maintenance_text(self) -> str:
|
||||
active = list(self.reactor.maintenance_active)
|
||||
return "[bold cyan]Maintenance[/bold cyan]\nActive: " + (", ".join(active) if active else "None")
|
||||
|
||||
def _health_text(self) -> str:
|
||||
lines = ["[bold cyan]Component Health[/bold cyan]"]
|
||||
for name, comp in self.reactor.health_monitor.components.items():
|
||||
lines.append(_bar(name, comp.integrity))
|
||||
return "\n".join(lines)
|
||||
|
||||
def _help_text(self) -> str:
|
||||
tips = [
|
||||
"Start pumps before withdrawing rods.",
|
||||
"Bring turbine/consumer online after thermal stabilization.",
|
||||
"Toggle turbine units 1/2/3 individually.",
|
||||
"Use m/n/,/. in curses; mapped to j/k etc here.",
|
||||
"F12 saves a snapshot; set FISSION_SNAPSHOT_AT for auto.",
|
||||
]
|
||||
return "[bold cyan]Controls & Tips[/bold cyan]\n" + "\n".join(f"- {t}" for t in tips)
|
||||
|
||||
def _log_text(self) -> str:
|
||||
lines = ["[bold cyan]Logs[/bold cyan]"]
|
||||
if not self.log_buffer:
|
||||
lines.append("No recent logs.")
|
||||
else:
|
||||
lines.extend(list(self.log_buffer))
|
||||
return "\n".join(lines)
|
||||
|
||||
def _turbine_status_lines(self) -> list[str]:
|
||||
if not self.reactor.turbine_unit_active:
|
||||
return []
|
||||
lines: list[str] = []
|
||||
for idx, active in enumerate(self.reactor.turbine_unit_active):
|
||||
label = f"{idx + 1}:"
|
||||
status = "ON" if active else "OFF"
|
||||
if idx < len(getattr(self.state, "turbines", [])):
|
||||
t_state = self.state.turbines[idx]
|
||||
status = getattr(t_state, "status", status)
|
||||
lines.append(f"{label}{status}")
|
||||
return lines
|
||||
|
||||
def _total_load_supplied(self, state: PlantState) -> float:
|
||||
return sum(t.load_supplied_mw for t in state.turbines)
|
||||
|
||||
def _total_load_demand(self, state: PlantState) -> float:
|
||||
return sum(t.load_demand_mw for t in state.turbines)
|
||||
|
||||
def _steam_available_power(self, state: PlantState) -> float:
|
||||
mass_flow = state.secondary_loop.mass_flow_rate * max(0.0, state.secondary_loop.steam_quality)
|
||||
if mass_flow <= 1.0:
|
||||
return 0.0
|
||||
enthalpy = state.turbines[0].steam_enthalpy if state.turbines else (constants.STEAM_LATENT_HEAT / 1_000.0)
|
||||
return (enthalpy * mass_flow) / 1_000.0
|
||||
|
||||
def _snapshot_lines(self) -> list[str]:
|
||||
return snapshot_lines(self.reactor, self.state)
|
||||
|
||||
def _save_snapshot(self, auto: bool = False) -> None:
|
||||
try:
|
||||
self.snapshot_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
self.snapshot_path.write_text("\n".join(self._snapshot_lines()))
|
||||
self.snapshot_done = True
|
||||
LOGGER.info("Saved dashboard snapshot to %s%s", self.snapshot_path, " (auto)" if auto else "")
|
||||
except Exception as exc: # pragma: no cover
|
||||
LOGGER.error("Failed to save snapshot: %s", exc)
|
||||
|
||||
def _install_log_capture(self) -> None:
|
||||
# Silence existing root handlers to avoid spewing logs over the UI.
|
||||
root = logging.getLogger()
|
||||
root.handlers = []
|
||||
# Capture reactor_sim logs into the on-screen log buffer.
|
||||
logger = logging.getLogger("reactor_sim")
|
||||
logger.propagate = False
|
||||
self._previous_handlers = list(logger.handlers)
|
||||
handler = logging.StreamHandler()
|
||||
handler.setLevel(logging.INFO)
|
||||
|
||||
def emit(record: logging.LogRecord) -> None:
|
||||
msg = handler.format(record)
|
||||
self.log_buffer.append(msg)
|
||||
|
||||
handler.emit = emit # type: ignore[assignment]
|
||||
logger.handlers = [handler]
|
||||
logger.setLevel(logging.INFO)
|
||||
self._log_handler = handler
|
||||
|
||||
def _restore_logging(self) -> None:
|
||||
logger = logging.getLogger("reactor_sim")
|
||||
if self._previous_handlers:
|
||||
logger.handlers = self._previous_handlers
|
||||
if self._log_handler and self._log_handler in logger.handlers:
|
||||
logger.removeHandler(self._log_handler)
|
||||
|
||||
def on_button_pressed(self, event: Button.Pressed) -> None: # type: ignore[override]
|
||||
mapping = {
|
||||
"scram": self.action_scram,
|
||||
"p1": self.action_toggle_primary_p1,
|
||||
"p2": self.action_toggle_primary_p2,
|
||||
"s1": self.action_toggle_secondary_p1,
|
||||
"s2": self.action_toggle_secondary_p2,
|
||||
"relief_pri": self.action_toggle_primary_relief,
|
||||
"relief_sec": self.action_toggle_secondary_relief,
|
||||
"turbines": self.action_toggle_turbine_bank,
|
||||
"t1": lambda: self.action_toggle_turbine_unit("1"),
|
||||
"t2": lambda: self.action_toggle_turbine_unit("2"),
|
||||
"t3": lambda: self.action_toggle_turbine_unit("3"),
|
||||
"g1": self.action_toggle_generator1,
|
||||
"g2": self.action_toggle_generator2,
|
||||
"consumer": self.action_toggle_consumer,
|
||||
"auto_rods": self.action_toggle_auto_rods,
|
||||
"rods_plus": self.action_rods_insert,
|
||||
"rods_minus": self.action_rods_withdraw,
|
||||
"demand_up": self.action_demand_up,
|
||||
"demand_down": self.action_demand_down,
|
||||
"sp_up": self.action_setpoint_up,
|
||||
"sp_down": self.action_setpoint_down,
|
||||
"snapshot": lambda: self._save_snapshot(auto=False),
|
||||
"m_core": self.action_maintain_core,
|
||||
"m_p1": self.action_maintain_primary_p1,
|
||||
"m_p2": self.action_maintain_primary_p2,
|
||||
"m_s1": self.action_maintain_secondary_p1,
|
||||
"m_s2": self.action_maintain_secondary_p2,
|
||||
"m_t1": self.action_maintain_turbine_1,
|
||||
"m_t2": self.action_maintain_turbine_2,
|
||||
"m_t3": self.action_maintain_turbine_3,
|
||||
"m_g1": self.action_maintain_generator_1,
|
||||
"m_g2": self.action_maintain_generator_2,
|
||||
}
|
||||
handler = mapping.get(event.button.id or "")
|
||||
if handler:
|
||||
handler()
|
||||
|
||||
|
||||
def run_textual_dashboard(reactor: Reactor, start_state: Optional[PlantState], timestep: float, save_path: Optional[str]) -> None:
|
||||
app = TextualDashboard(reactor, start_state, timestep=timestep, save_path=save_path)
|
||||
app.run()
|
||||
@@ -13,13 +13,37 @@ from .state import CoolantLoopState, CoreState
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def heat_transfer(primary: CoolantLoopState, secondary: CoolantLoopState, core_power_mw: float) -> float:
|
||||
def heat_transfer(
|
||||
primary: CoolantLoopState, secondary: CoolantLoopState, core_power_mw: float, fouling_factor: float = 0.0
|
||||
) -> float:
|
||||
"""Return MW transferred to the secondary loop."""
|
||||
delta_t = max(0.0, primary.temperature_out - secondary.temperature_in)
|
||||
conductance = 0.15 # steam generator effectiveness
|
||||
efficiency = 1.0 - math.exp(-conductance * delta_t)
|
||||
transferred = min(core_power_mw, core_power_mw * efficiency)
|
||||
LOGGER.debug("Heat transfer %.2f MW with ΔT=%.1fK", transferred, delta_t)
|
||||
if primary.mass_flow_rate <= 0.0 or secondary.mass_flow_rate <= 0.0:
|
||||
return 0.0
|
||||
delta_t1 = max(1e-3, primary.temperature_out - secondary.temperature_in)
|
||||
delta_t2 = max(1e-3, primary.temperature_in - secondary.temperature_out)
|
||||
if delta_t1 <= 0.0 or delta_t2 <= 0.0:
|
||||
return 0.0
|
||||
if abs(delta_t1 - delta_t2) < 1e-6:
|
||||
lmtd = delta_t1
|
||||
else:
|
||||
lmtd = (delta_t1 - delta_t2) / math.log(delta_t1 / delta_t2)
|
||||
fouling = max(0.0, min(constants.HX_FOULING_MAX_PENALTY, fouling_factor))
|
||||
ua = constants.STEAM_GENERATOR_UA_MW_PER_K * (1.0 - fouling)
|
||||
ua_limited = ua * lmtd
|
||||
|
||||
# Prevent the heat exchanger from over-transferring and inverting the outlet temperatures.
|
||||
primary_capacity = primary.mass_flow_rate * constants.COOLANT_HEAT_CAPACITY
|
||||
secondary_capacity = secondary.mass_flow_rate * constants.COOLANT_HEAT_CAPACITY
|
||||
approach = 2.0 # K minimum approach between loop outlets
|
||||
pinch_limited = 0.0
|
||||
if primary_capacity > 0.0 and secondary_capacity > 0.0:
|
||||
temp_gap = primary.temperature_out - secondary.temperature_in - approach
|
||||
if temp_gap > 0.0:
|
||||
pinch_watts = temp_gap / ((1.0 / primary_capacity) + (1.0 / secondary_capacity))
|
||||
pinch_limited = max(0.0, pinch_watts / constants.MEGAWATT)
|
||||
|
||||
transferred = max(0.0, min(core_power_mw, ua_limited, pinch_limited))
|
||||
LOGGER.debug("Heat transfer %.2f MW with LMTD=%.1fK (ΔT1=%.1f ΔT2=%.1f)", transferred, lmtd, delta_t1, delta_t2)
|
||||
return transferred
|
||||
|
||||
|
||||
@@ -29,19 +53,108 @@ def temperature_rise(power_mw: float, mass_flow: float) -> float:
|
||||
return (power_mw * constants.MEGAWATT) / (mass_flow * constants.COOLANT_HEAT_CAPACITY)
|
||||
|
||||
|
||||
def saturation_pressure(temp_k: float) -> float:
|
||||
"""Return approximate saturation pressure (MPa) for water at temp_k."""
|
||||
temp_c = max(0.0, temp_k - 273.15)
|
||||
# Antoine equation parameters for water in 1-374C range, pressure in mmHg.
|
||||
a, b, c = 8.14019, 1810.94, 244.485
|
||||
psat_mmHg = 10 ** (a - (b / (c + temp_c)))
|
||||
psat_mpa = psat_mmHg * 133.322e-6
|
||||
return min(constants.MAX_PRESSURE, max(0.01, psat_mpa))
|
||||
|
||||
|
||||
def saturation_temperature(pressure_mpa: float) -> float:
|
||||
"""Approximate saturation temperature (K) for water at the given pressure."""
|
||||
target = max(0.01, min(constants.MAX_PRESSURE, pressure_mpa))
|
||||
low, high = 273.15, 900.0
|
||||
for _ in range(40):
|
||||
mid = 0.5 * (low + high)
|
||||
if saturation_pressure(mid) < target:
|
||||
low = mid
|
||||
else:
|
||||
high = mid
|
||||
return high
|
||||
|
||||
|
||||
@dataclass
|
||||
class ThermalSolver:
|
||||
primary_volume_m3: float = 300.0
|
||||
|
||||
def step_core(self, core: CoreState, primary: CoolantLoopState, power_mw: float, dt: float) -> None:
|
||||
def _resolve_secondary_state(self, secondary: CoolantLoopState) -> None:
|
||||
"""Project stored energy onto temperature, quality, and pressure."""
|
||||
cp = constants.COOLANT_HEAT_CAPACITY
|
||||
mass = max(1e-6, secondary.inventory_kg)
|
||||
secondary.energy_j = max(0.0, secondary.energy_j)
|
||||
sat_temp = saturation_temperature(max(0.05, secondary.pressure))
|
||||
liquid_energy = mass * cp * sat_temp
|
||||
available = secondary.energy_j
|
||||
|
||||
if available <= liquid_energy:
|
||||
temp = available / (mass * cp)
|
||||
secondary.temperature_out = max(constants.ENVIRONMENT_TEMPERATURE, temp)
|
||||
secondary.steam_quality = 0.0
|
||||
else:
|
||||
latent_energy = min(available - liquid_energy, mass * constants.STEAM_LATENT_HEAT)
|
||||
quality = latent_energy / (mass * constants.STEAM_LATENT_HEAT)
|
||||
superheat_energy = max(0.0, available - liquid_energy - latent_energy)
|
||||
superheat_temp = superheat_energy / (mass * cp) if quality >= 1.0 else 0.0
|
||||
secondary.temperature_out = sat_temp + superheat_temp
|
||||
secondary.steam_quality = max(0.0, min(1.0, quality))
|
||||
secondary.energy_j = liquid_energy + latent_energy + superheat_energy
|
||||
|
||||
secondary.pressure = min(
|
||||
constants.MAX_PRESSURE, max(secondary.pressure, saturation_pressure(secondary.temperature_out))
|
||||
)
|
||||
|
||||
def step_core(
|
||||
self,
|
||||
core: CoreState,
|
||||
primary: CoolantLoopState,
|
||||
power_mw: float,
|
||||
dt: float,
|
||||
residual_power_mw: float | None = None,
|
||||
) -> None:
|
||||
def _lag(prev: float, new: float, tau: float) -> float:
|
||||
if tau <= 0.0:
|
||||
return new
|
||||
alpha = min(1.0, max(0.0, dt / max(1e-6, tau)))
|
||||
return prev + alpha * (new - prev)
|
||||
|
||||
if residual_power_mw is None:
|
||||
residual_power_mw = power_mw
|
||||
prev_fuel = core.fuel_temperature
|
||||
prev_clad = core.clad_temperature or primary.temperature_out
|
||||
temp_rise = temperature_rise(power_mw, primary.mass_flow_rate)
|
||||
primary.temperature_out = primary.temperature_in + temp_rise
|
||||
# Fuel heats from any power not immediately convected away, and cools toward the primary outlet.
|
||||
heating = 0.005 * max(0.0, power_mw - temp_rise) * dt
|
||||
cooling = 0.05 * max(0.0, core.fuel_temperature - primary.temperature_out) * dt
|
||||
# Fuel heats from total fission power (even when most is convected) plus any residual left in the coolant.
|
||||
heating = (0.003 * max(0.0, power_mw) + 0.01 * max(0.0, residual_power_mw)) * dt
|
||||
cooling = 0.025 * max(0.0, core.fuel_temperature - primary.temperature_out) * dt
|
||||
core.fuel_temperature += heating - cooling
|
||||
# Keep fuel temperature bounded and never below the coolant outlet temperature.
|
||||
core.fuel_temperature = min(max(primary.temperature_out, core.fuel_temperature), constants.MAX_CORE_TEMPERATURE)
|
||||
# Simple radial split: fuel -> clad conduction with burnup-driven conductivity drop and gap penalty.
|
||||
gap_penalty = 1.0 + 2.0 * core.burnup
|
||||
conductivity = 0.03 / gap_penalty
|
||||
conduction = conductivity * max(0.0, core.fuel_temperature - (core.clad_temperature or primary.temperature_out)) * dt
|
||||
clad = core.clad_temperature or primary.temperature_out
|
||||
clad_cooling = 0.06 * max(0.0, clad - primary.temperature_out) * dt
|
||||
clad = max(primary.temperature_out, clad + conduction - clad_cooling)
|
||||
core.fuel_temperature = max(primary.temperature_out, core.fuel_temperature - conduction)
|
||||
# Peak pellet centerline surrogate based on power and burnup conductivity loss.
|
||||
peak_delta = 20.0 * (core.power_output_mw / max(1.0, constants.NORMAL_CORE_POWER_MW)) * (1.0 + core.burnup)
|
||||
core.pellet_center_temperature = min(constants.MAX_CORE_TEMPERATURE, core.fuel_temperature + peak_delta)
|
||||
# Keep temperatures bounded and never below coolant outlet.
|
||||
core.fuel_temperature = min(core.fuel_temperature, constants.MAX_CORE_TEMPERATURE)
|
||||
core.clad_temperature = min(clad, constants.MAX_CORE_TEMPERATURE)
|
||||
# Apply mild lags so heat moves from fuel to clad to coolant over a short time constant.
|
||||
core.fuel_temperature = _lag(prev_fuel, core.fuel_temperature, constants.FUEL_TO_CLAD_TIME_CONSTANT)
|
||||
core.clad_temperature = _lag(prev_clad, core.clad_temperature or prev_clad, constants.CLAD_TO_COOLANT_TIME_CONSTANT)
|
||||
core.subcooling_margin = max(0.0, saturation_temperature(primary.pressure) - primary.temperature_out)
|
||||
chf = self._critical_heat_flux(primary)
|
||||
heat_flux = (power_mw * constants.MEGAWATT) / max(1.0, self._core_surface_area())
|
||||
core.dnb_margin = max(0.0, chf / max(1e-6, heat_flux))
|
||||
avg_temp = 0.5 * (primary.temperature_in + primary.temperature_out)
|
||||
primary.energy_j = max(
|
||||
0.0, primary.inventory_kg * constants.COOLANT_HEAT_CAPACITY * avg_temp
|
||||
)
|
||||
LOGGER.debug(
|
||||
"Primary loop: flow=%.0f kg/s temp_out=%.1fK core_temp=%.1fK",
|
||||
primary.mass_flow_rate,
|
||||
@@ -49,14 +162,50 @@ class ThermalSolver:
|
||||
core.fuel_temperature,
|
||||
)
|
||||
|
||||
def step_secondary(self, secondary: CoolantLoopState, transferred_mw: float) -> None:
|
||||
delta_t = temperature_rise(transferred_mw, secondary.mass_flow_rate)
|
||||
secondary.temperature_out = secondary.temperature_in + delta_t
|
||||
secondary.steam_quality = min(1.0, max(0.0, delta_t / 100.0))
|
||||
secondary.pressure = min(constants.MAX_PRESSURE, 6.0 + delta_t * 0.01)
|
||||
def step_secondary(self, secondary: CoolantLoopState, transferred_mw: float, dt: float = 1.0) -> None:
|
||||
"""Update secondary loop using a stored-energy steam-drum balance."""
|
||||
cp = constants.COOLANT_HEAT_CAPACITY
|
||||
mass = max(1e-6, secondary.inventory_kg)
|
||||
if secondary.energy_j <= 0.0:
|
||||
secondary.energy_j = mass * cp * secondary.average_temperature()
|
||||
|
||||
# Add transferred heat; if no heat, bleed toward ambient.
|
||||
if transferred_mw > 0.0:
|
||||
secondary.energy_j += transferred_mw * constants.MEGAWATT * dt
|
||||
else:
|
||||
bleed = 0.01 * (secondary.temperature_out - constants.ENVIRONMENT_TEMPERATURE)
|
||||
secondary.energy_j = max(
|
||||
mass * cp * constants.ENVIRONMENT_TEMPERATURE, secondary.energy_j - max(0.0, bleed) * mass * cp * dt
|
||||
)
|
||||
|
||||
self._resolve_secondary_state(secondary)
|
||||
LOGGER.debug(
|
||||
"Secondary loop: transferred=%.1fMW temp_out=%.1fK quality=%.2f",
|
||||
"Secondary loop: transferred=%.1fMW temp_out=%.1fK quality=%.2f energy=%.1eJ",
|
||||
transferred_mw,
|
||||
secondary.temperature_out,
|
||||
secondary.steam_quality,
|
||||
secondary.energy_j,
|
||||
)
|
||||
|
||||
def remove_steam_energy(self, secondary: CoolantLoopState, steam_power_mw: float, dt: float) -> None:
|
||||
"""Remove steam enthalpy consumed by turbines and rebalance the drum."""
|
||||
if steam_power_mw <= 0.0:
|
||||
return
|
||||
secondary.energy_j = max(0.0, secondary.energy_j - steam_power_mw * constants.MEGAWATT * dt)
|
||||
self._resolve_secondary_state(secondary)
|
||||
|
||||
def _critical_heat_flux(self, primary: CoolantLoopState) -> float:
|
||||
"""CHF surrogate with pressure, mass flux, and subcooling influence (Chen-like)."""
|
||||
area = self._core_surface_area()
|
||||
mass_flux = max(1.0, primary.mass_flow_rate / max(1.0, area)) # kg/s per m2 surrogate
|
||||
pressure_factor = 0.6 + 0.4 * min(1.0, primary.pressure / max(0.1, constants.MAX_PRESSURE))
|
||||
subcool = max(0.0, saturation_temperature(primary.pressure) - primary.temperature_out)
|
||||
subcool_factor = max(0.2, min(1.0, subcool / 30.0))
|
||||
flux_factor = max(0.4, min(3.0, (mass_flux / 500.0) ** 0.5))
|
||||
base_chf = 1.2e7 # W/m2 surrogate baseline
|
||||
return base_chf * flux_factor * pressure_factor * subcool_factor
|
||||
|
||||
def _core_surface_area(self) -> float:
|
||||
# Simple surrogate: area scaling with volume^(2/3)
|
||||
volume = self.primary_volume_m3
|
||||
return max(1.0, (volume ** (2.0 / 3.0)) * 10.0)
|
||||
|
||||
@@ -6,6 +6,7 @@ from dataclasses import dataclass
|
||||
import logging
|
||||
|
||||
from . import constants
|
||||
from .thermal import saturation_temperature, saturation_pressure
|
||||
from .state import CoolantLoopState, TurbineState
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
@@ -26,25 +27,60 @@ class Turbine:
|
||||
generator_efficiency: float = constants.GENERATOR_EFFICIENCY
|
||||
mechanical_efficiency: float = constants.STEAM_TURBINE_EFFICIENCY
|
||||
rated_output_mw: float = 400.0 # cap per unit electrical output
|
||||
spool_time: float = constants.TURBINE_SPOOL_TIME
|
||||
throttle: float = 1.0 # 0-1 valve position
|
||||
|
||||
def step(
|
||||
self,
|
||||
loop: CoolantLoopState,
|
||||
state: TurbineState,
|
||||
steam_power_mw: float = 0.0,
|
||||
dt: float = 1.0,
|
||||
) -> None:
|
||||
enthalpy = 2_700.0 + loop.steam_quality * 600.0
|
||||
mass_flow = loop.mass_flow_rate * 0.6
|
||||
available_power = max(steam_power_mw, (enthalpy * mass_flow / 1_000.0) / 1_000.0)
|
||||
shaft_power_mw = available_power * self.mechanical_efficiency
|
||||
effective_mass_flow = loop.mass_flow_rate * max(0.0, loop.steam_quality)
|
||||
if steam_power_mw <= 0.0 and (loop.steam_quality <= 0.01 or effective_mass_flow <= 10.0):
|
||||
# No steam available; turbine should idle.
|
||||
state.shaft_power_mw = 0.0
|
||||
state.electrical_output_mw = 0.0
|
||||
state.load_demand_mw = 0.0
|
||||
state.load_supplied_mw = 0.0
|
||||
state.steam_enthalpy = 0.0
|
||||
state.condenser_temperature = max(constants.CONDENSER_COOLING_WATER_TEMP_K, loop.temperature_in - 20.0)
|
||||
state.condenser_pressure = max(constants.CONDENSER_BASE_PRESSURE_MPA, state.condenser_pressure - 0.01 * dt)
|
||||
state.fouling_penalty = max(0.0, state.fouling_penalty - 0.0001 * dt)
|
||||
return
|
||||
|
||||
throttle = min(constants.TURBINE_THROTTLE_MAX, max(constants.TURBINE_THROTTLE_MIN, self.throttle))
|
||||
throttle_eff = 1.0 - constants.TURBINE_THROTTLE_EFFICIENCY_DROP * (constants.TURBINE_THROTTLE_MAX - throttle)
|
||||
|
||||
sat_temp = saturation_temperature(max(0.05, loop.pressure))
|
||||
superheat = max(0.0, loop.temperature_out - sat_temp)
|
||||
enthalpy = (constants.STEAM_LATENT_HEAT / 1_000.0) + (superheat * constants.COOLANT_HEAT_CAPACITY / 1_000.0)
|
||||
mass_flow = effective_mass_flow * 0.6 * throttle
|
||||
computed_power = (enthalpy * mass_flow) / 1_000.0 # MW from enthalpy flow
|
||||
available_power = steam_power_mw if steam_power_mw > 0 else computed_power
|
||||
available_power = min(available_power, computed_power)
|
||||
backpressure_loss = 1.0 - _backpressure_penalty(state)
|
||||
shaft_power_mw = available_power * self.mechanical_efficiency * throttle_eff * backpressure_loss
|
||||
electrical = shaft_power_mw * self.generator_efficiency
|
||||
if electrical > self.rated_output_mw:
|
||||
electrical = self.rated_output_mw
|
||||
shaft_power_mw = electrical / max(1e-6, self.generator_efficiency)
|
||||
condenser_temp = max(305.0, loop.temperature_in - 20.0)
|
||||
condenser_temp = max(constants.CONDENSER_COOLING_WATER_TEMP_K, loop.temperature_in - 20.0)
|
||||
# Vacuum pump tends toward base pressure; fouling raises it slowly when hot.
|
||||
target_pressure = constants.CONDENSER_BASE_PRESSURE_MPA
|
||||
if condenser_temp > constants.CONDENSER_COOLING_WATER_TEMP_K + 20.0:
|
||||
state.fouling_penalty = min(
|
||||
constants.CONDENSER_FOULING_MAX_PENALTY,
|
||||
state.fouling_penalty + constants.CONDENSER_FOULING_RATE * dt,
|
||||
)
|
||||
state.condenser_pressure = max(
|
||||
target_pressure,
|
||||
min(constants.CONDENSER_MAX_PRESSURE_MPA, state.condenser_pressure - constants.CONDENSER_VACUUM_PUMP_RATE * dt),
|
||||
)
|
||||
state.steam_enthalpy = enthalpy
|
||||
state.shaft_power_mw = shaft_power_mw
|
||||
state.electrical_output_mw = electrical
|
||||
state.shaft_power_mw = _ramp(state.shaft_power_mw, shaft_power_mw, dt, self.spool_time)
|
||||
state.electrical_output_mw = _ramp(state.electrical_output_mw, electrical, dt, self.spool_time)
|
||||
state.condenser_temperature = condenser_temp
|
||||
LOGGER.debug(
|
||||
"Turbine output: shaft=%.1fMW electrical=%.1fMW condenser=%.1fK",
|
||||
@@ -52,3 +88,21 @@ class Turbine:
|
||||
electrical,
|
||||
condenser_temp,
|
||||
)
|
||||
|
||||
|
||||
def _ramp(current: float, target: float, dt: float, time_constant: float) -> float:
|
||||
if time_constant <= 0.0:
|
||||
return target
|
||||
alpha = min(1.0, max(0.0, dt / max(1e-6, time_constant)))
|
||||
return current + (target - current) * alpha
|
||||
|
||||
|
||||
def _backpressure_penalty(state: TurbineState) -> float:
|
||||
base = constants.CONDENSER_BASE_PRESSURE_MPA
|
||||
max_p = constants.CONDENSER_MAX_PRESSURE_MPA
|
||||
pressure = max(base, min(max_p, state.condenser_pressure))
|
||||
if pressure <= base:
|
||||
return min(constants.CONDENSER_BACKPRESSURE_PENALTY, state.fouling_penalty)
|
||||
frac = (pressure - base) / max(1e-6, max_p - base)
|
||||
penalty = frac * constants.CONDENSER_BACKPRESSURE_PENALTY
|
||||
return min(constants.CONDENSER_BACKPRESSURE_PENALTY + state.fouling_penalty, penalty + state.fouling_penalty)
|
||||
|
||||
18
tests/test_aux_power.py
Normal file
18
tests/test_aux_power.py
Normal file
@@ -0,0 +1,18 @@
|
||||
from reactor_sim.reactor import Reactor
|
||||
from reactor_sim.commands import ReactorCommand
|
||||
|
||||
|
||||
def test_pump_stays_off_without_aux_power():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.primary_pump_active = True
|
||||
reactor.primary_pump_units = [True, False]
|
||||
reactor.secondary_pump_active = False
|
||||
reactor.generator_auto = False
|
||||
reactor.turbine_unit_active = [False, False, False]
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(primary_pumps={1: True}))
|
||||
|
||||
assert state.primary_loop.mass_flow_rate == 0.0
|
||||
assert state.primary_pumps[0].status in {"OFF", "STOPPING"}
|
||||
40
tests/test_control.py
Normal file
40
tests/test_control.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import pytest
|
||||
|
||||
from reactor_sim.control import ControlSystem
|
||||
from reactor_sim import constants
|
||||
from reactor_sim.state import CoreState
|
||||
|
||||
|
||||
def _core_state() -> CoreState:
|
||||
return CoreState(
|
||||
fuel_temperature=300.0,
|
||||
neutron_flux=1e5,
|
||||
reactivity_margin=0.0,
|
||||
power_output_mw=0.0,
|
||||
burnup=0.0,
|
||||
)
|
||||
|
||||
|
||||
def test_manual_rods_quantized_to_step():
|
||||
control = ControlSystem()
|
||||
control.manual_control = True
|
||||
core = _core_state()
|
||||
|
||||
control.set_rods(0.333)
|
||||
assert control.rod_target == 0.325
|
||||
control.update_rods(core, dt=100.0)
|
||||
assert control.rod_fraction == pytest.approx(0.325, rel=1e-6)
|
||||
|
||||
control.increment_rods(0.014)
|
||||
assert control.rod_target == pytest.approx(0.35)
|
||||
control.update_rods(core, dt=100.0)
|
||||
assert control.rod_fraction == pytest.approx(0.35, rel=1e-6)
|
||||
|
||||
# Clamp upper bound
|
||||
control.set_rods(1.0)
|
||||
control.update_rods(core, dt=100.0)
|
||||
assert control.rod_fraction == 0.95
|
||||
|
||||
|
||||
def test_dashboard_step_constant_exposed():
|
||||
assert constants.ROD_MANUAL_STEP == 0.025
|
||||
@@ -1,3 +1,5 @@
|
||||
import pytest
|
||||
|
||||
from reactor_sim.neutronics import NeutronDynamics
|
||||
from reactor_sim.state import CoreState
|
||||
|
||||
@@ -22,5 +24,34 @@ def test_reactivity_increases_with_rod_withdrawal():
|
||||
state = _core_state()
|
||||
rho_full_out = dynamics.reactivity(state, control_fraction=0.0)
|
||||
rho_half = dynamics.reactivity(state, control_fraction=0.5)
|
||||
assert rho_full_out > 0.0
|
||||
assert rho_full_out > rho_half
|
||||
|
||||
|
||||
def test_poisons_accumulate_under_power():
|
||||
dynamics = NeutronDynamics()
|
||||
state = _core_state(power=800.0, flux=1e6)
|
||||
dynamics.update_poisons(state, dt=100.0)
|
||||
dynamics.update_poisons(state, dt=100.0)
|
||||
assert state.iodine_inventory > 0.0
|
||||
assert state.xenon_inventory > 0.0
|
||||
|
||||
|
||||
def test_xenon_penalty_caps():
|
||||
dynamics = NeutronDynamics()
|
||||
state = _core_state()
|
||||
state.xenon_inventory = 50.0
|
||||
assert dynamics.xenon_penalty(state) == 0.05
|
||||
state.xenon_inventory = 0.2
|
||||
assert dynamics.xenon_penalty(state) == pytest.approx(0.01)
|
||||
|
||||
|
||||
def test_delayed_precursors_follow_rod_banks():
|
||||
dynamics = NeutronDynamics()
|
||||
state = _core_state(power=600.0, flux=5e6)
|
||||
dynamics.step(state, control_fraction=0.2, dt=1.0, rod_banks=[0.2, 0.2, 0.2])
|
||||
initial_sum = sum(state.delayed_precursors)
|
||||
assert len(state.delayed_precursors) == 3
|
||||
assert initial_sum > 0.0
|
||||
|
||||
dynamics.step(state, control_fraction=0.95, dt=2.0, rod_banks=[0.95, 0.95, 0.95])
|
||||
assert sum(state.delayed_precursors) < initial_sum
|
||||
|
||||
36
tests/test_pressurizer.py
Normal file
36
tests/test_pressurizer.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from reactor_sim.reactor import Reactor
|
||||
from reactor_sim.commands import ReactorCommand
|
||||
|
||||
|
||||
def test_pressurizer_raises_pressure_with_level():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
state.primary_loop.pressure = 0.5
|
||||
reactor.pressurizer_level = 0.8
|
||||
reactor.primary_pump_active = False
|
||||
reactor.secondary_pump_active = False
|
||||
reactor.shutdown = False
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand())
|
||||
|
||||
assert state.primary_loop.pressure > 0.5
|
||||
assert reactor.pressurizer_level < 0.8
|
||||
|
||||
|
||||
def test_low_npsh_limits_primary_flow():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.0
|
||||
reactor.primary_pump_active = True
|
||||
reactor.primary_pump_units = [True, True]
|
||||
reactor.secondary_pump_active = False
|
||||
state.primary_loop.pressure = 0.05 # near-vacuum to force cavitation
|
||||
state.primary_loop.temperature_in = 400.0
|
||||
state.primary_loop.temperature_out = 600.0
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(generator_units={1: True}))
|
||||
|
||||
assert state.primary_pumps[0].status == "CAV"
|
||||
assert state.primary_loop.mass_flow_rate < 100.0
|
||||
@@ -4,6 +4,7 @@ from pathlib import Path
|
||||
import pytest
|
||||
|
||||
from reactor_sim import constants
|
||||
from reactor_sim.commands import ReactorCommand
|
||||
from reactor_sim.failures import HealthMonitor
|
||||
from reactor_sim.reactor import Reactor
|
||||
from reactor_sim.simulation import ReactorSimulation
|
||||
@@ -19,6 +20,7 @@ def test_reactor_initial_state_is_cold():
|
||||
|
||||
def test_state_save_and_load_roundtrip(tmp_path: Path):
|
||||
reactor = Reactor.default()
|
||||
reactor.control.manual_control = True
|
||||
sim = ReactorSimulation(reactor, timestep=5.0, duration=15.0)
|
||||
sim.log()
|
||||
save_path = tmp_path / "plant_state.json"
|
||||
@@ -31,13 +33,18 @@ def test_state_save_and_load_roundtrip(tmp_path: Path):
|
||||
sim.last_state.core.fuel_temperature
|
||||
)
|
||||
assert restored_reactor.control.rod_fraction == reactor.control.rod_fraction
|
||||
assert restored_reactor.control.manual_control == reactor.control.manual_control
|
||||
assert len(restored_state.primary_pumps) == 2
|
||||
assert len(restored_state.secondary_pumps) == 2
|
||||
|
||||
|
||||
def test_health_monitor_flags_core_failure():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
state.core.fuel_temperature = constants.MAX_CORE_TEMPERATURE
|
||||
failures = reactor.health_monitor.evaluate(state, True, True, [True, True, True], dt=200.0)
|
||||
failures = reactor.health_monitor.evaluate(
|
||||
state, [True, True], [True, True], [True, True, True], state.generators, dt=200.0
|
||||
)
|
||||
assert "core" in failures
|
||||
reactor._handle_failure("core")
|
||||
assert reactor.shutdown is True
|
||||
@@ -45,10 +52,327 @@ def test_health_monitor_flags_core_failure():
|
||||
|
||||
def test_maintenance_recovers_component_health():
|
||||
monitor = HealthMonitor()
|
||||
pump = monitor.component("secondary_pump")
|
||||
pump = monitor.component("secondary_pump_1")
|
||||
pump.integrity = 0.3
|
||||
pump.fail()
|
||||
restored = monitor.maintain("secondary_pump", amount=0.5)
|
||||
restored = monitor.maintain("secondary_pump_1", amount=0.5)
|
||||
assert restored is True
|
||||
assert pump.integrity == pytest.approx(0.8)
|
||||
assert pump.failed is False
|
||||
|
||||
|
||||
def test_secondary_pump_loss_triggers_scram_and_no_steam():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
# Make sure some power is present to trigger heat-sink logic.
|
||||
state.core.power_output_mw = 500.0
|
||||
reactor.secondary_pump_active = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.1
|
||||
reactor.step(state, dt=1.0)
|
||||
assert reactor.shutdown is True
|
||||
assert all(t.electrical_output_mw == 0.0 for t in state.turbines)
|
||||
|
||||
|
||||
def test_cold_shutdown_stays_subcritical():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.95
|
||||
reactor.primary_pump_active = False
|
||||
reactor.secondary_pump_active = False
|
||||
initial_power = state.core.power_output_mw
|
||||
for _ in range(10):
|
||||
reactor.step(state, dt=1.0)
|
||||
assert state.core.power_output_mw <= initial_power + 0.5
|
||||
assert reactor.shutdown is True
|
||||
|
||||
|
||||
def test_toggle_maintenance_progresses_until_restored():
|
||||
reactor = Reactor.default()
|
||||
reactor.primary_pump_units = [False, False]
|
||||
reactor.primary_pump_active = False
|
||||
pump = reactor.health_monitor.component("primary_pump_1")
|
||||
pump.integrity = 0.2
|
||||
|
||||
def provider(t: float, _state):
|
||||
if t == 0:
|
||||
return ReactorCommand.maintain("primary_pump_1")
|
||||
return None
|
||||
|
||||
sim = ReactorSimulation(reactor, timestep=1.0, duration=50.0, command_provider=provider)
|
||||
sim.log()
|
||||
assert pump.integrity >= 0.99
|
||||
assert "primary_pump_1" not in reactor.maintenance_active
|
||||
|
||||
|
||||
def test_primary_pump_unit_toggle_updates_active_flag():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.primary_pump_active = True
|
||||
reactor.primary_pump_units = [True, True]
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(primary_pumps={1: False}))
|
||||
assert reactor.primary_pump_units == [False, True]
|
||||
assert reactor.primary_pump_active is True
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(primary_pumps={2: False}))
|
||||
assert reactor.primary_pump_units == [False, False]
|
||||
assert reactor.primary_pump_active is False
|
||||
|
||||
|
||||
def test_secondary_pump_unit_toggle_can_restart_pump():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.secondary_pump_active = False
|
||||
reactor.secondary_pump_units = [False, False]
|
||||
|
||||
cmd = ReactorCommand(secondary_pumps={1: True}, generator_units={1: True})
|
||||
for _ in range(5):
|
||||
reactor.step(state, dt=1.0, command=cmd)
|
||||
cmd = ReactorCommand(coolant_demand=0.75)
|
||||
|
||||
assert reactor.secondary_pump_units == [True, False]
|
||||
assert reactor.secondary_pump_active is True
|
||||
assert state.secondary_loop.mass_flow_rate > 0.0
|
||||
|
||||
|
||||
def test_primary_pumps_spool_up_over_seconds():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.secondary_pump_units = [False, False]
|
||||
# Enable both pumps and command full flow; spool should take multiple steps.
|
||||
target_flow = reactor.primary_pump.flow_rate(1.0) * len(reactor.primary_pump_units)
|
||||
cmd = ReactorCommand(primary_pumps={1: True, 2: True}, generator_units={1: True}, coolant_demand=1.0)
|
||||
reactor.step(state, dt=1.0, command=cmd)
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(coolant_demand=1.0))
|
||||
first_flow = state.primary_loop.mass_flow_rate
|
||||
assert 0.0 < first_flow < target_flow
|
||||
|
||||
for _ in range(10):
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(coolant_demand=1.0))
|
||||
|
||||
assert state.primary_loop.mass_flow_rate == pytest.approx(target_flow, rel=0.15)
|
||||
|
||||
|
||||
def test_full_rod_withdrawal_reaches_gigawatt_power():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.0
|
||||
reactor.primary_pump_active = True
|
||||
reactor.secondary_pump_active = True
|
||||
reactor.primary_pump_units = [True, True]
|
||||
reactor.secondary_pump_units = [True, True]
|
||||
reactor.generator_auto = True
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(generator_units={1: True}))
|
||||
|
||||
early_power = 0.0
|
||||
for step in range(60):
|
||||
reactor.step(state, dt=1.0)
|
||||
if step == 10:
|
||||
early_power = state.core.power_output_mw
|
||||
assert state.core.power_output_mw > max(2_000.0, early_power * 2)
|
||||
assert state.core.fuel_temperature > 600.0
|
||||
|
||||
|
||||
def test_partially_inserted_rods_hold_near_three_gw():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.set_manual_mode(False)
|
||||
reactor.primary_pump_active = True
|
||||
reactor.secondary_pump_active = True
|
||||
reactor.primary_pump_units = [True, True]
|
||||
reactor.secondary_pump_units = [True, True]
|
||||
reactor.generator_auto = True
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(generator_units={1: True}))
|
||||
|
||||
for _ in range(180):
|
||||
reactor.step(state, dt=1.0)
|
||||
|
||||
assert 2_500.0 < state.core.power_output_mw < 3_500.0
|
||||
assert 0.05 < reactor.control.rod_fraction < 0.9
|
||||
|
||||
|
||||
def test_generator_spools_and_powers_pumps():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.95 # keep power low; focus on aux power
|
||||
reactor.turbine_unit_active = [False, False, False]
|
||||
reactor.secondary_pump_units = [False, False]
|
||||
|
||||
for step in range(12):
|
||||
cmd = ReactorCommand(generator_units={1: True}, primary_pumps={1: True}) if step == 0 else None
|
||||
reactor.step(state, dt=1.0, command=cmd)
|
||||
|
||||
assert state.generators and state.generators[0].running is True
|
||||
assert state.generators[0].power_output_mw > 0.0
|
||||
assert state.primary_loop.mass_flow_rate > 0.0
|
||||
|
||||
|
||||
def test_generator_manual_mode_allows_single_unit_and_stop():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.95
|
||||
reactor.generator_auto = False
|
||||
reactor.primary_pump_units = [True, False]
|
||||
reactor.secondary_pump_units = [False, False]
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(generator_units={1: True}, primary_pumps={1: True}))
|
||||
assert state.generators[0].starting or state.generators[0].running
|
||||
|
||||
for _ in range(15):
|
||||
reactor.step(state, dt=1.0)
|
||||
|
||||
assert state.generators[0].running is True
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(generator_units={1: False}))
|
||||
for _ in range(5):
|
||||
reactor.step(state, dt=1.0)
|
||||
assert state.generators[0].running is False
|
||||
assert state.generators[1].running is False
|
||||
|
||||
|
||||
def test_meltdown_triggers_shutdown():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = False
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.0
|
||||
reactor.primary_pump_active = True
|
||||
reactor.secondary_pump_active = True
|
||||
state.core.fuel_temperature = constants.CORE_MELTDOWN_TEMPERATURE + 50.0
|
||||
|
||||
reactor.step(state, dt=1.0)
|
||||
|
||||
assert reactor.shutdown is True
|
||||
assert reactor.meltdown is True
|
||||
|
||||
|
||||
def test_auto_control_resets_shutdown_and_moves_rods():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
reactor.shutdown = True
|
||||
reactor.control.manual_control = True
|
||||
reactor.control.rod_fraction = 0.95
|
||||
|
||||
reactor.step(state, dt=1.0, command=ReactorCommand(rod_manual=False))
|
||||
|
||||
assert reactor.shutdown is False
|
||||
assert reactor.control.manual_control is False
|
||||
assert reactor.control.rod_fraction < 0.95
|
||||
|
||||
|
||||
def test_chemistry_builds_fouling_and_backpressure():
|
||||
reactor = Reactor.default()
|
||||
state = reactor.initial_state()
|
||||
# Push impurities high to accelerate fouling dynamics.
|
||||
state.dissolved_oxygen_ppm = 200.0
|
||||
state.sodium_ppm = 100.0
|
||||
state.secondary_loop.mass_flow_rate = 20_000.0
|
||||
state.secondary_loop.steam_quality = 0.3
|
||||
state.secondary_loop.temperature_out = 600.0
|
||||
state.secondary_loop.temperature_in = 560.0
|
||||
base_hx = state.hx_fouling
|
||||
base_foul = state.turbines[0].fouling_penalty if state.turbines else 0.0
|
||||
base_pressure = state.turbines[0].condenser_pressure if state.turbines else constants.CONDENSER_BASE_PRESSURE_MPA
|
||||
|
||||
reactor._update_chemistry(state, dt=20.0)
|
||||
|
||||
assert state.hx_fouling > base_hx
|
||||
if state.turbines:
|
||||
assert state.turbines[0].fouling_penalty > base_foul
|
||||
assert state.turbines[0].condenser_pressure >= base_pressure
|
||||
|
||||
|
||||
def test_full_power_reaches_steam_and_turbine_output():
|
||||
"""Integration: ramp to full power with staged rod control and verify sustained steam/electric output."""
|
||||
reactor = Reactor.default()
|
||||
reactor.health_monitor.disable_degradation = True
|
||||
reactor.allow_external_aux = True
|
||||
reactor.relaxed_npsh = True
|
||||
reactor.control.set_power_setpoint(3_000.0)
|
||||
state = reactor.initial_state()
|
||||
reactor.step(
|
||||
state,
|
||||
dt=1.0,
|
||||
command=ReactorCommand(
|
||||
generator_units={1: True, 2: True},
|
||||
primary_pumps={1: True, 2: True},
|
||||
secondary_pumps={1: True, 2: True},
|
||||
rod_manual=True,
|
||||
rod_position=0.55,
|
||||
),
|
||||
)
|
||||
checkpoints = {300, 600, 900, 1800, 2700, 3600}
|
||||
results = {}
|
||||
turbines_started = False
|
||||
for i in range(3600):
|
||||
cmd = None
|
||||
if state.core.power_output_mw >= 2_500.0 and reactor.control.manual_control:
|
||||
cmd = ReactorCommand(rod_manual=False)
|
||||
if (
|
||||
not turbines_started
|
||||
and state.secondary_loop.steam_quality > 0.02
|
||||
and state.secondary_loop.pressure > 1.0
|
||||
):
|
||||
cmd = ReactorCommand(turbine_on=True, turbine_units={1: True, 2: True, 3: True})
|
||||
turbines_started = True
|
||||
if i == 600 and not turbines_started:
|
||||
cmd = ReactorCommand(turbine_on=True, turbine_units={1: True, 2: True, 3: True})
|
||||
turbines_started = True
|
||||
reactor.step(state, dt=1.0, command=cmd)
|
||||
if state.time_elapsed in checkpoints:
|
||||
results[state.time_elapsed] = {
|
||||
"quality": state.secondary_loop.steam_quality,
|
||||
"electric": state.total_electrical_output(),
|
||||
"core_temp": state.core.fuel_temperature,
|
||||
}
|
||||
|
||||
# At or after 10 minutes of operation, ensure we have meaningful steam and electrical output.
|
||||
assert results[600]["quality"] > 0.05
|
||||
assert results[600]["electric"] > 50.0
|
||||
assert results[3600]["quality"] > 0.1
|
||||
assert results[3600]["electric"] > 150.0
|
||||
# No runaway core temperatures.
|
||||
assert results[3600]["core_temp"] < constants.CORE_MELTDOWN_TEMPERATURE
|
||||
|
||||
|
||||
def test_cooldown_reaches_ambient_without_runaway():
|
||||
"""Shutdown with pumps running should cool loops toward ambient, no runaway."""
|
||||
reactor = Reactor.default()
|
||||
reactor.health_monitor.disable_degradation = True
|
||||
reactor.allow_external_aux = True
|
||||
reactor.relaxed_npsh = True
|
||||
state = reactor.initial_state()
|
||||
# Start hot.
|
||||
reactor.step(
|
||||
state,
|
||||
dt=1.0,
|
||||
command=ReactorCommand(
|
||||
generator_units={1: True, 2: True},
|
||||
primary_pumps={1: True, 2: True},
|
||||
secondary_pumps={1: True, 2: True},
|
||||
rod_manual=True,
|
||||
rod_position=0.55,
|
||||
),
|
||||
)
|
||||
turbines_started = False
|
||||
for i in range(1800):
|
||||
cmd = None
|
||||
if not turbines_started and state.secondary_loop.steam_quality > 0.02 and state.secondary_loop.pressure > 1.0:
|
||||
cmd = ReactorCommand(turbine_on=True, turbine_units={1: True, 2: True, 3: True})
|
||||
turbines_started = True
|
||||
if i == 900:
|
||||
cmd = ReactorCommand(rod_position=0.95, turbine_on=False, turbine_units={1: False, 2: False, 3: False})
|
||||
reactor.step(state, dt=1.0, command=cmd)
|
||||
|
||||
assert not reactor.meltdown
|
||||
assert state.core.power_output_mw < 1.0
|
||||
assert state.primary_loop.temperature_out < 320.0
|
||||
assert state.secondary_loop.temperature_out < 320.0
|
||||
|
||||
50
tests/test_thermal.py
Normal file
50
tests/test_thermal.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import pytest
|
||||
|
||||
from reactor_sim import constants
|
||||
from reactor_sim.state import CoolantLoopState
|
||||
from reactor_sim.thermal import ThermalSolver, heat_transfer, saturation_temperature
|
||||
|
||||
|
||||
def _secondary_loop(temp_in: float = 350.0, pressure: float = 0.5, flow: float = 200.0) -> CoolantLoopState:
|
||||
nominal_mass = constants.SECONDARY_LOOP_VOLUME_M3 * constants.COOLANT_DENSITY
|
||||
return CoolantLoopState(
|
||||
temperature_in=temp_in,
|
||||
temperature_out=temp_in,
|
||||
pressure=pressure,
|
||||
mass_flow_rate=flow,
|
||||
steam_quality=0.0,
|
||||
inventory_kg=nominal_mass,
|
||||
level=constants.SECONDARY_INVENTORY_TARGET,
|
||||
)
|
||||
|
||||
|
||||
def test_secondary_heats_to_saturation_before_boiling():
|
||||
solver = ThermalSolver()
|
||||
loop = _secondary_loop(temp_in=330.0, flow=180.0, pressure=0.5)
|
||||
sat_temp = saturation_temperature(loop.pressure)
|
||||
solver.step_secondary(loop, transferred_mw=50.0, dt=1.0)
|
||||
assert loop.steam_quality == pytest.approx(0.0)
|
||||
assert loop.temperature_out < sat_temp
|
||||
|
||||
|
||||
def test_secondary_generates_steam_when_energy_exceeds_sensible_heat():
|
||||
solver = ThermalSolver()
|
||||
loop = _secondary_loop(temp_in=330.0, flow=180.0, pressure=0.5)
|
||||
loop.inventory_kg *= 0.1 # reduce mass to let boil-up happen quickly
|
||||
sat_temp = saturation_temperature(loop.pressure)
|
||||
solver.step_secondary(loop, transferred_mw=120.0, dt=100.0)
|
||||
assert loop.temperature_out == pytest.approx(sat_temp, rel=0.05)
|
||||
assert loop.steam_quality > 0.0
|
||||
assert loop.steam_quality < 1.0
|
||||
|
||||
|
||||
def test_heat_transfer_reduced_by_fouling():
|
||||
primary = CoolantLoopState(
|
||||
temperature_in=360.0, temperature_out=380.0, pressure=15.0, mass_flow_rate=50_000.0, steam_quality=0.0
|
||||
)
|
||||
secondary = CoolantLoopState(
|
||||
temperature_in=320.0, temperature_out=330.0, pressure=6.5, mass_flow_rate=50_000.0, steam_quality=0.1
|
||||
)
|
||||
clean = heat_transfer(primary, secondary, core_power_mw=7_000.0, fouling_factor=0.0)
|
||||
fouled = heat_transfer(primary, secondary, core_power_mw=7_000.0, fouling_factor=0.25)
|
||||
assert fouled < clean
|
||||
57
tests/test_turbine.py
Normal file
57
tests/test_turbine.py
Normal file
@@ -0,0 +1,57 @@
|
||||
import pytest
|
||||
|
||||
from reactor_sim.state import CoolantLoopState, TurbineState
|
||||
from reactor_sim.turbine import Turbine
|
||||
|
||||
|
||||
def test_turbine_spools_toward_target_output():
|
||||
turbine = Turbine()
|
||||
turbine.throttle = 1.0
|
||||
loop = CoolantLoopState(
|
||||
temperature_in=600.0,
|
||||
temperature_out=650.0,
|
||||
pressure=0.02,
|
||||
mass_flow_rate=20_000.0,
|
||||
steam_quality=0.9,
|
||||
)
|
||||
state = TurbineState(
|
||||
steam_enthalpy=0.0,
|
||||
shaft_power_mw=0.0,
|
||||
electrical_output_mw=0.0,
|
||||
condenser_temperature=300.0,
|
||||
)
|
||||
target_electric = min(
|
||||
turbine.rated_output_mw,
|
||||
300.0 * turbine.mechanical_efficiency * turbine.generator_efficiency,
|
||||
)
|
||||
|
||||
dt = 1.0
|
||||
turbine.step(loop, state, steam_power_mw=300.0, dt=dt)
|
||||
assert 0.0 < state.electrical_output_mw < target_electric
|
||||
|
||||
for _ in range(60):
|
||||
turbine.step(loop, state, steam_power_mw=300.0, dt=dt)
|
||||
|
||||
assert state.electrical_output_mw == pytest.approx(target_electric, rel=0.05)
|
||||
|
||||
|
||||
def test_turbine_produces_no_power_without_steam():
|
||||
turbine = Turbine()
|
||||
loop = CoolantLoopState(
|
||||
temperature_in=295.0,
|
||||
temperature_out=295.0,
|
||||
pressure=6.0,
|
||||
mass_flow_rate=20_000.0,
|
||||
steam_quality=0.0,
|
||||
)
|
||||
state = TurbineState(
|
||||
steam_enthalpy=0.0,
|
||||
shaft_power_mw=0.0,
|
||||
electrical_output_mw=0.0,
|
||||
condenser_temperature=300.0,
|
||||
)
|
||||
|
||||
turbine.step(loop, state, steam_power_mw=0.0, dt=1.0)
|
||||
|
||||
assert state.electrical_output_mw == 0.0
|
||||
assert state.shaft_power_mw == 0.0
|
||||
Reference in New Issue
Block a user