Add delayed kinetics and steam-drum balance

This commit is contained in:
Codex Agent
2025-11-24 00:06:08 +01:00
parent 9dc4ca7733
commit f6ff6fc618
9 changed files with 163 additions and 16 deletions

View File

@@ -8,6 +8,7 @@ NEUTRON_LIFETIME = 0.1 # seconds, prompt neutron lifetime surrogate
FUEL_ENERGY_DENSITY = 200.0 * MEGAWATT # J/kg released as heat
COOLANT_HEAT_CAPACITY = 4_200.0 # J/(kg*K) for water/steam
COOLANT_DENSITY = 700.0 # kg/m^3 averaged between phases
STEAM_LATENT_HEAT = 2_200_000.0 # J/kg approximate latent heat of vaporization
CORE_MELTDOWN_TEMPERATURE = 2_873.0 # K (approx 2600C) threshold for irreversible meltdown
MAX_CORE_TEMPERATURE = CORE_MELTDOWN_TEMPERATURE # Allow simulation to approach meltdown temperature
MAX_PRESSURE = 15.0 # MPa typical PWR primary loop limit

View File

@@ -26,7 +26,7 @@ def xenon_poisoning(flux: float) -> float:
@dataclass
class NeutronDynamics:
beta_effective: float = 0.0065
delayed_neutron_fraction: float = 0.0008
delayed_decay_const: float = 0.08 # 1/s effective precursor decay
external_source_coupling: float = 1e-6
shutdown_bias: float = -0.014
iodine_yield: float = 1e-6 # inventory units per MW*s
@@ -55,12 +55,18 @@ class NeutronDynamics:
return rho
def flux_derivative(
self, state: CoreState, rho: float, external_source_rate: float = 0.0, baseline_source: float = 1e5
self,
state: CoreState,
rho: float,
delayed_source: float,
external_source_rate: float = 0.0,
baseline_source: float = 1e5,
) -> float:
generation_time = constants.NEUTRON_LIFETIME
beta = self.beta_effective
source_term = self.external_source_coupling * external_source_rate
return ((rho - beta) / generation_time) * state.neutron_flux + baseline_source + source_term
prompt = ((rho - beta) / generation_time) * state.neutron_flux
return prompt + delayed_source + baseline_source + source_term
def step(
self,
@@ -77,9 +83,22 @@ class NeutronDynamics:
rho = min(rho, -0.04)
baseline = 0.0 if shutdown else 1e5
source = 0.0 if shutdown else external_source_rate
d_flux = self.flux_derivative(state, rho, source, baseline_source=baseline)
rod_positions = rod_banks if rod_banks else [control_fraction] * len(constants.CONTROL_ROD_BANK_WEIGHTS)
self._ensure_precursors(state, len(rod_positions))
bank_factors = self._bank_factors(rod_positions)
bank_betas = self._bank_betas(len(bank_factors))
delayed_source = self._delayed_source(state, bank_factors)
d_flux = self.flux_derivative(
state,
rho,
delayed_source,
external_source_rate=source,
baseline_source=baseline,
)
state.neutron_flux = max(0.0, state.neutron_flux + d_flux * dt)
state.reactivity_margin = rho
self._update_precursors(state, bank_factors, bank_betas, dt)
LOGGER.debug(
"Neutronics: rho=%.5f, flux=%.2e n/cm2/s, d_flux=%.2e",
rho,
@@ -102,3 +121,38 @@ class NeutronDynamics:
def _xenon_penalty(self, state: CoreState) -> float:
return min(0.05, state.xenon_inventory * self.xenon_reactivity_coeff)
def _bank_betas(self, bank_count: int) -> list[float]:
weights = list(constants.CONTROL_ROD_BANK_WEIGHTS)
if bank_count != len(weights):
weights = [1.0 for _ in range(bank_count)]
total = sum(weights) if weights else 1.0
return [self.beta_effective * (w / total) for w in weights]
def _bank_factors(self, positions: list[float]) -> list[float]:
factors: list[float] = []
for pos in positions:
insertion = clamp(pos, 0.0, 0.95)
factors.append(max(0.0, 1.0 - insertion / 0.95))
return factors
def _ensure_precursors(self, state: CoreState, bank_count: int) -> None:
if not state.delayed_precursors or len(state.delayed_precursors) != bank_count:
state.delayed_precursors = [0.0 for _ in range(bank_count)]
def _delayed_source(self, state: CoreState, bank_factors: list[float]) -> float:
decay = self.delayed_decay_const
return sum(decay * precursor * factor for precursor, factor in zip(state.delayed_precursors, bank_factors))
def _update_precursors(
self, state: CoreState, bank_factors: list[float], bank_betas: list[float], dt: float
) -> None:
generation_time = constants.NEUTRON_LIFETIME
decay = self.delayed_decay_const
new_pools: list[float] = []
for precursor, factor, beta in zip(state.delayed_precursors, bank_factors, bank_betas):
production = (beta / generation_time) * state.neutron_flux * factor
loss = decay * precursor
updated = max(0.0, precursor + (production - loss) * dt)
new_pools.append(updated)
state.delayed_precursors = new_pools

View File

@@ -95,6 +95,7 @@ class Reactor:
reactivity_margin=-0.02,
power_output_mw=0.1,
burnup=0.0,
delayed_precursors=[0.0 for _ in constants.CONTROL_ROD_BANK_WEIGHTS],
fission_product_inventory={},
emitted_particles={},
)
@@ -387,7 +388,7 @@ class Reactor:
else:
transferred = heat_transfer(state.primary_loop, state.secondary_loop, total_power)
self.thermal.step_core(state.core, state.primary_loop, total_power, dt)
self.thermal.step_secondary(state.secondary_loop, transferred)
self.thermal.step_secondary(state.secondary_loop, transferred, dt)
self._apply_secondary_boiloff(state, dt)
self._update_loop_inventory(
state.secondary_loop, constants.SECONDARY_LOOP_VOLUME_M3, constants.SECONDARY_INVENTORY_TARGET, dt

View File

@@ -20,6 +20,7 @@ class CoreState:
burnup: float # fraction of fuel consumed
xenon_inventory: float = 0.0
iodine_inventory: float = 0.0
delayed_precursors: list[float] = field(default_factory=list)
fission_product_inventory: dict[str, float] = field(default_factory=dict)
emitted_particles: dict[str, float] = field(default_factory=dict)

View File

@@ -60,6 +60,19 @@ def saturation_pressure(temp_k: float) -> float:
return min(constants.MAX_PRESSURE, max(0.01, psat_mpa))
def saturation_temperature(pressure_mpa: float) -> float:
"""Approximate saturation temperature (K) for water at the given pressure."""
target = max(0.01, min(constants.MAX_PRESSURE, pressure_mpa))
low, high = 273.15, 900.0
for _ in range(40):
mid = 0.5 * (low + high)
if saturation_pressure(mid) < target:
low = mid
else:
high = mid
return high
@dataclass
class ThermalSolver:
primary_volume_m3: float = 300.0
@@ -89,10 +102,37 @@ class ThermalSolver:
core.fuel_temperature,
)
def step_secondary(self, secondary: CoolantLoopState, transferred_mw: float) -> None:
delta_t = temperature_rise(transferred_mw, secondary.mass_flow_rate)
secondary.temperature_out = secondary.temperature_in + delta_t
secondary.steam_quality = min(1.0, max(0.0, delta_t / 100.0))
def step_secondary(self, secondary: CoolantLoopState, transferred_mw: float, dt: float = 1.0) -> None:
"""Update secondary loop using a simple steam-drum mass/energy balance."""
if transferred_mw <= 0.0 or secondary.mass_flow_rate <= 0.0:
secondary.steam_quality = max(0.0, secondary.steam_quality - 0.02 * dt)
secondary.temperature_out = max(
constants.ENVIRONMENT_TEMPERATURE, secondary.temperature_out - 0.5 * dt
)
secondary.pressure = max(
0.1, min(constants.MAX_PRESSURE, saturation_pressure(secondary.temperature_out))
)
return
temp_in = secondary.temperature_in
mass_flow = secondary.mass_flow_rate
cp = constants.COOLANT_HEAT_CAPACITY
sat_temp = saturation_temperature(max(0.05, secondary.pressure))
energy_j = max(0.0, transferred_mw) * constants.MEGAWATT * dt
# Energy needed to heat incoming feed to saturation.
sensible_j = max(0.0, sat_temp - temp_in) * mass_flow * cp * dt
if energy_j <= sensible_j:
delta_t = temperature_rise(transferred_mw, mass_flow)
secondary.temperature_out = temp_in + delta_t
secondary.steam_quality = 0.0
else:
energy_left = energy_j - sensible_j
steam_mass = energy_left / constants.STEAM_LATENT_HEAT
produced_fraction = steam_mass / max(1e-6, mass_flow * dt)
secondary.temperature_out = sat_temp
secondary.steam_quality = min(1.0, max(0.0, produced_fraction))
secondary.pressure = min(
constants.MAX_PRESSURE, max(secondary.pressure, saturation_pressure(secondary.temperature_out))
)