Add enthalpy-based secondary boil-off and turbine mapping

This commit is contained in:
Codex Agent
2025-11-25 17:47:37 +01:00
parent 4162ecf712
commit 0f54540526
7 changed files with 113 additions and 38 deletions

View File

@@ -16,7 +16,7 @@ from .fuel import FuelAssembly, decay_heat_fraction
from .generator import DieselGenerator, GeneratorState
from .neutronics import NeutronDynamics
from .state import CoolantLoopState, CoreState, PlantState, PumpState, TurbineState
from .thermal import ThermalSolver, heat_transfer, saturation_pressure, temperature_rise
from .thermal import ThermalSolver, heat_transfer, saturation_pressure, saturation_temperature, temperature_rise
from .turbine import SteamGenerator, Turbine
LOGGER = logging.getLogger(__name__)
@@ -126,6 +126,7 @@ class Reactor:
steam_quality=0.0,
inventory_kg=primary_nominal_mass * constants.PRIMARY_INVENTORY_TARGET,
level=constants.PRIMARY_INVENTORY_TARGET,
energy_j=primary_nominal_mass * constants.PRIMARY_INVENTORY_TARGET * constants.COOLANT_HEAT_CAPACITY * ambient,
)
secondary = CoolantLoopState(
temperature_in=ambient,
@@ -135,6 +136,7 @@ class Reactor:
steam_quality=0.0,
inventory_kg=secondary_nominal_mass * constants.SECONDARY_INVENTORY_TARGET,
level=constants.SECONDARY_INVENTORY_TARGET,
energy_j=secondary_nominal_mass * constants.SECONDARY_INVENTORY_TARGET * constants.COOLANT_HEAT_CAPACITY * ambient,
)
primary_pumps = [
PumpState(active=self.primary_pump_active and self.primary_pump_units[idx], flow_rate=0.0, pressure=0.5)
@@ -434,6 +436,17 @@ class Reactor:
cooling_drop = min(40.0, max(10.0, 0.2 * excess))
state.secondary_loop.temperature_in = max(env, state.secondary_loop.temperature_out - cooling_drop)
# Keep stored energies consistent with updated temperatures/quality.
cp = constants.COOLANT_HEAT_CAPACITY
primary_avg = 0.5 * (state.primary_loop.temperature_in + state.primary_loop.temperature_out)
state.primary_loop.energy_j = max(0.0, state.primary_loop.inventory_kg * cp * primary_avg)
sat_temp_sec = saturation_temperature(max(0.05, state.secondary_loop.pressure))
sec_liquid_energy = state.secondary_loop.inventory_kg * cp * min(state.secondary_loop.temperature_out, sat_temp_sec)
sec_latent = state.secondary_loop.inventory_kg * state.secondary_loop.steam_quality * constants.STEAM_LATENT_HEAT
superheat = max(0.0, state.secondary_loop.temperature_out - sat_temp_sec)
sec_superheat = state.secondary_loop.inventory_kg * cp * superheat if state.secondary_loop.steam_quality >= 1.0 else 0.0
state.secondary_loop.energy_j = max(0.0, sec_liquid_energy + sec_latent + sec_superheat)
state.primary_to_secondary_delta_t = max(0.0, state.primary_loop.temperature_out - state.secondary_loop.temperature_in)
state.heat_exchanger_efficiency = 0.0 if total_power <= 0 else min(1.0, max(0.0, transferred / max(1e-6, total_power)))
@@ -578,7 +591,13 @@ class Reactor:
if loop.mass_flow_rate <= 0.0 or loop.steam_quality <= 0.0:
return
steam_mass = loop.mass_flow_rate * loop.steam_quality * constants.SECONDARY_STEAM_LOSS_FRACTION * dt
if steam_mass <= 0.0:
return
prev_mass = max(1e-6, loop.inventory_kg)
loop.inventory_kg = max(0.0, loop.inventory_kg - steam_mass)
# Scale stored energy with the remaining mass to keep specific enthalpy consistent.
ratio = max(0.0, loop.inventory_kg) / prev_mass
loop.energy_j *= ratio
nominal = self._nominal_inventory(constants.SECONDARY_LOOP_VOLUME_M3)
loop.level = min(1.2, max(0.0, loop.inventory_kg / nominal)) if nominal > 0 else 0.0